scispace - formally typeset
Search or ask a question
Author

Hideaki Yukawa

Bio: Hideaki Yukawa is an academic researcher from Mitsubishi. The author has contributed to research in topics: Corynebacterium glutamicum & Plasmid. The author has an hindex of 50, co-authored 190 publications receiving 8657 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A Corynebacterium glutamicum strain (ΔldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding l-lactate dehydrogenase was investigated in detail for succinic acid production.
Abstract: A Corynebacterium glutamicum strain (ΔldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding l-lactate dehydrogenase was investigated in detail for succinic acid production. Succinic acid was shown to be efficiently produced at high-cell density under oxygen deprivation with intermittent addition of sodium bicarbonate and glucose. Succinic acid concentration reached 1.24 M (146 g l−1) within 46 h. The yields of succinic acid and acetic acid from glucose were 1.40 mol mol−1 (0.92 g g−1) and 0.29 mol mol−1 (0.10 g g−1), respectively. The succinic acid production rate and yield depended on medium bicarbonate concentration rather than glucose concentration. Consumption of bicarbonate accompanied with succinic acid production implied that added bicarbonate was used for succinic acid synthesis.

434 citations

Journal ArticleDOI
TL;DR: The BCD activity, which was not detected in E. coli previously, was shown by performing the procedure from cell extract preparation to activity measurement under anaerobic condition and the etfA and etfB co-expression was found to be essential for the B CD activity.
Abstract: A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase (CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric, high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing the genes of a strict anaerobe, Clostridium acetobutylicum.

394 citations

Journal ArticleDOI
TL;DR: Observations corroborates the view that in coryneform bacteria under oxygen deprivation conditions the major anaplerotic reaction is driven by the ppc gene product rather than by the pyC gene product, and intracellular NADH concentrations in C. glutamicum were observed to correlate to oxygen-deprived metabolic flows.
Abstract: Lactate and succinate were produced from glucose by Corynebacterium glutamicum under oxygen deprivation conditions without growth. Addition of bicarbonate to the reaction mixture le

352 citations

Journal ArticleDOI
TL;DR: In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids, and was genetically modified to produce d-lactate dehydrogenase-encoding genes from Escherichia coli and Lactobacillus delbrueckii.
Abstract: In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.

340 citations

Journal ArticleDOI
TL;DR: Observations corroborate the view that intracellular NADH concentrations in C. glutamicum are correlated to oxygen-deprived metabolic flows.
Abstract: The central metabolic pathway of Corynebacterium glutamicum was engineered to produce ethanol. A recombinant strain which expressed the Zymomonas mobilis genes coding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) was constructed. Both genes placed under the control of the C. glutamicum ldhA promoter were expressed at high levels in C. glutamicum, resulting, under oxygen-deprivation conditions, in a significant yield ofethanol from glucose in a process characterized by the absence of cellular growth. Addition of pyruvate in trace amounts to the reaction mixture induced a 2-fold increase in the ethanol production rate. A similar effect was observed when acetaldehyde was added. Disruption of the lactate dehydrogenase (ldhA) gene led to a 3-fold higher ethanol yield than wild type, with no lactate production. Moreover, inactivation of the phosphoenolpyruvate carboxylase (ppc) and ldhA genes revealed a significant amount of ethanol production and a dramatic decrease in succinate without any lactate production, when pyruvate was added. Since the reaction occurred in the absence of cell growth, the ethanol volumetric productivity increased in proportion to cell density of ethanologenic C. glutamicum in a process under oxygen-deprivation conditions. These observations corroborate the view that intracellular NADH concentrations in C. glutamicum are correlated to oxygen-deprived metabolic flows.

280 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review attempts to bring together the biochemical and physicochemical aspects of PHA along with new perspectives on its potential therapeutic applications to show that the polymer's physical properties can be regulated to a great extent.

1,917 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations, and hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.

1,495 citations

Journal ArticleDOI
TL;DR: The most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner are discussed.
Abstract: Using the process of carbon catabolite repression (CCR), bacteria control gene expression and protein activity to preferentially metabolize the carbon sources that are most easily accessible and allow fastest growth. Recent findings have provided new insight into the mechanisms that different bacteria use to control CCR. Most bacteria can selectively use substrates from a mixture of different carbon sources. The presence of preferred carbon sources prevents the expression, and often also the activity, of catabolic systems that enable the use of secondary substrates. This regulation, called carbon catabolite repression (CCR), can be achieved by different regulatory mechanisms, including transcription activation and repression and control of translation by an RNA-binding protein, in different bacteria. Moreover, CCR regulates the expression of virulence factors in many pathogenic bacteria. In this Review, we discuss the most recent findings on the different mechanisms that have evolved to allow bacteria to use carbon sources in a hierarchical manner.

1,416 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive state of the art describing the advancement in recent pretreaments, metabolic engineering approaches with special emphasis on the latest developments in consolidated biomass processing, current global scenario of bioethanol pilot plants and biorefinery concept for the production of biofuels and bioproducts.

1,369 citations

Journal ArticleDOI
TL;DR: The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Abstract: Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.

1,247 citations