scispace - formally typeset
Search or ask a question
Author

Hidefumi Hiura

Bio: Hidefumi Hiura is an academic researcher from NEC. The author has contributed to research in topics: Graphene & Carbon nanotube. The author has an hindex of 31, co-authored 78 publications receiving 8433 citations. Previous affiliations of Hidefumi Hiura include National Institute for Materials Science & National Institute of Advanced Industrial Science and Technology.


Papers
More filters
Journal ArticleDOI
01 Jul 1996-Nature
TL;DR: In this paper, the authors reported four-probe measurements on single nanotubes made by lithographic deposition of tungsten leads across the tubes and found that each multi-shell nanotube has unique conductivity properties.
Abstract: THE interest in carbon nanotubes has been greatly stimulated by theoretical predictions that their electronic properties are strongly modulated by small structural variations1–8. In particular, the diameter and the helicity of carbon atoms in the nanotube shell are believed to determine whether the nanotube is metallic or a semiconductor. Because of the enormous technical challenge of making measurements on individual nanotubes, however, experimental studies have been limited mainly to bulk measurements9, which indicate only that a fraction of the nanotubes are metallic or narrow-band semiconductors10. Recently, measurements of the magneto-conductance of a single multi-shell nanotube in a two-probe configuration showed that the transport is characterized by disorder and localization phenomena11. To avoid possible ambiguities due to poor sample contacts, four-probe measurements are needed. Here we report four-probe measurements on single nanotubes made by lithographic deposition of tungsten leads across the tubes. We find that each multi-shell nanotube has unique conductivity properties. Both metallic and non-metallic behaviour are observed, as well as abrupt jumps in conductivity as the temperature is varied. The differences between the electrical properties of different nanotubes are far greater than expected. Our results suggest that differences in geometry play a profound part in determining the electronic behaviour.

2,421 citations

Journal ArticleDOI
01 Apr 1993-Nature
TL;DR: In this paper, it was shown that the oxidation of carbon nanotubes in air for short durations above about 700 °C results in the etching away of the tube caps and the thinning of tubes through layer-by-layer peeling of the outer layers, starting from the cap region.
Abstract: CAPPED hollow carbon nanotubes1,2 can be modified into nanocomposite fibres by simultaneous opening of the caps (by heating in the presence of air and lead metal) and filling of the interior with an inorganic phase3. To generalize this approach, greater understanding is needed of the reaction mechanism between the tube caps and oxygen. Here we report that the oxidation of carbon nanotubes in air for short durations above about 700 °C results in the etching away of the tube caps and the thinning of tubes through layer-by-layer peeling of the outer layers, starting from the cap region. The oxidation reaction follows an Arrhenius-type relation with an activation energy barrier of about 225 kJ mol−1 in air. Heating of closed nanotubes with an oxide (Pb3O4) in an inert atmosphere lowers the activation barrier for the reaction and opening of the tubes occurs at lower temperatures. Contrary to intuition, however, open tubes are much more difficult to fill with inorganic materials than in the one-step filling of tubes reported previously3. But various other experiments might be possible in the inner nano-cavities of the open tubes such as studies of catalysis and of low-dimensional chemistry and physics.

1,026 citations

Journal ArticleDOI
23 Sep 1994-Science
TL;DR: The wetting and capillarity of carbon Nanotubes were studied in detail here and have important implications for the further use of carbon nanotubes in experiments on a nanometer scale.
Abstract: The wetting and capillarity of carbon nanotubes were studied in detail here. Nanotubes are not "super-straws," although they can be wet and filled by substances having low surface tension, such as sulfur, selenium, and cesium, with an upper limit to this tension less than 200 millinewtons per meter. This limit implies that typical pure metals will not be drawn into the inner cavity of nanotubes through capillarity, whereas water and organic solvents will. These results have important implications for the further use of carbon nanotubes in experiments on a nanometer scale.

821 citations

Journal ArticleDOI
01 Feb 1994-Nature

434 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
Sumio Iijima1, Toshinari Ichihashi1
17 Jun 1993-Nature
TL;DR: In this article, the authors reported the synthesis of abundant single-shell tubes with diameters of about one nanometre, whereas the multi-shell nanotubes are formed on the carbon cathode.
Abstract: CARBON nanotubes1 are expected to have a wide variety of interesting properties. Capillarity in open tubes has already been demonstrated2–5, while predictions regarding their electronic structure6–8 and mechanical strength9 remain to be tested. To examine the properties of these structures, one needs tubes with well defined morphologies, length, thickness and a number of concentric shells; but the normal carbon-arc synthesis10,11 yields a range of tube types. In particular, most calculations have been concerned with single-shell tubes, whereas the carbon-arc synthesis produces almost entirely multi-shell tubes. Here we report the synthesis of abundant single-shell tubes with diameters of about one nanometre. Whereas the multi-shell nanotubes are formed on the carbon cathode, these single-shell tubes grow in the gas phase. Electron diffraction from a single tube allows us to confirm the helical arrangement of carbon hexagons deduced previously for multi-shell tubes1.

8,018 citations

Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
27 Mar 1997-Nature
TL;DR: In this article, a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs) under conditions that do not induce adsorption within a standard mesoporous activated carbon.
Abstract: Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores1, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested2 that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes3. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectrosocopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

3,558 citations

Journal ArticleDOI

3,052 citations