scispace - formally typeset
Search or ask a question
Author

Hideomi Koinuma

Bio: Hideomi Koinuma is an academic researcher from University of Tokyo. The author has contributed to research in topics: Thin film & Pulsed laser deposition. The author has an hindex of 82, co-authored 739 publications receiving 31231 citations. Previous affiliations of Hideomi Koinuma include University of Tsukuba & Tohoku University.


Papers
More filters
Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8% is reported, indicating the existence of ferromagnetic long-range ordering.
Abstract: Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.

2,302 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a new technique to fabricate p-type ZnO reproducibly, and showed high-quality undoped films with electron mobility exceeding that in the bulk.
Abstract: Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow2,3,4. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation5,6. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus7,8,9,10, and even p–n junctions11,12,13. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate14. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors15. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p–i–n junctions is demonstrated at room-temperature.

1,964 citations

Journal ArticleDOI
TL;DR: In this article, a wide gap II-VI semiconductor alloy, MgxZn1−xO, was proposed for the fabrication of heteroepitaxial ultraviolet light emitting devices based on ZnO.
Abstract: We propose a widegap II–VI semiconductor alloy, MgxZn1−xO, for the fabrication of heteroepitaxial ultraviolet light emitting devices based on ZnO. The c-axis oriented MgxZn1−xO films were epitaxially grown by pulsed laser deposition on ZnO epitaxial films and sapphire (0001) substrates using ceramic targets. Solid solution films were prepared with Mg content up to x=0.33, achieving a band gap of 3.99 eV at room temperature. MgO impurity phase segregated at x⩾0.36. Lattice constants of MgxZn1−xO films changed slightly (∼1%), increasing in a axis and decreasing in c-axis direction with increasing x. These films showed ultraviolet photoluminescence at energies from 3.36 (x=0) to 3.87 eV (x=0.33) at 4.2 K.

1,441 citations

Journal ArticleDOI
02 Dec 1994-Science
TL;DR: The atomically smooth SrTiO3 (100) with steps one unit cell in height was obtained by treating the crystal surface with a pH-controlled NH4F-HF solution, providing a well-defined substrate surface for atomically regulated epitaxial growth of such perovskite oxide films as YBa2Cu3O7-δ.
Abstract: The atomically smooth SrTiO3 (100) with steps one unit cell in height was obtained by treating the crystal surface with a pH-controlled NH4F-HF solution. The homoepitaxy of SrTiO3 film on the crystal surface proceeds in a perfect layer-by-layer mode as verified by reflection high-energy electron diffraction and atomic force microscopy. Ion scattering spectroscopy revealed that the TiO2 atomic plane terminated the as-treated clean surface and that the terminating atomic layer could be tuned to the SrO atomic plane by homooepitaxial growth. This technology provides a well-defined substrate surface for atomically regulated epitaxial growth of such perovskite oxide films as YBa2Cu3O7-δ.

1,111 citations

Journal ArticleDOI
TL;DR: In this paper, room temperature free excition absorption and luminescence were observed in ZnO thin films grown on sapphire substrates by the laser molecular beam epitaxy technique.

925 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: The field of photocatalysis can be traced back more than 80 years to early observations of the chalking of titania-based paints and to studies of the darkening of metal oxides in contact with organic compounds in sunlight as discussed by the authors.

5,729 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase transition of Na6(CO3)(SO4)2, Na2SO4, and Na2CO3 of the Na2O/Na2O 2 mixture at the stationary phase and shows clear patterns in the response of these two materials to each other.
Abstract: Jenny Schneider,*,† Masaya Matsuoka,‡ Masato Takeuchi,‡ Jinlong Zhang, Yu Horiuchi,‡ Masakazu Anpo,‡ and Detlef W. Bahnemann*,† †Institut fur Technische Chemie, Leibniz Universitaẗ Hannover, Callinstrasse 3, D-30167 Hannover, Germany ‡Faculty of Engineering, Osaka Prefecture University, 1 Gakuen-cho, Sakai Osaka 599-8531, Japan Key Lab for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, China

4,353 citations