scispace - formally typeset
Search or ask a question
Author

Hideya Fukuzawa

Other affiliations: Kobe University, University of Tokyo, Rockefeller University  ...read more
Bio: Hideya Fukuzawa is an academic researcher from Kyoto University. The author has contributed to research in topics: Chlamydomonas reinhardtii & Marchantia polymorpha. The author has an hindex of 46, co-authored 145 publications receiving 10714 citations. Previous affiliations of Hideya Fukuzawa include Kobe University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
Sabeeha S. Merchant1, Simon E. Prochnik2, Olivier Vallon3, Elizabeth H. Harris4, Steven J. Karpowicz1, George B. Witman5, Astrid Terry2, Asaf Salamov2, Lillian K. Fritz-Laylin6, Laurence Maréchal-Drouard7, Wallace F. Marshall8, Liang-Hu Qu9, David R. Nelson10, Anton A. Sanderfoot11, Martin H. Spalding12, Vladimir V. Kapitonov13, Qinghu Ren, Patrick J. Ferris14, Erika Lindquist2, Harris Shapiro2, Susan Lucas2, Jane Grimwood15, Jeremy Schmutz15, Pierre Cardol3, Pierre Cardol16, Heriberto Cerutti17, Guillaume Chanfreau1, Chun-Long Chen9, Valérie Cognat7, Martin T. Croft18, Rachel M. Dent6, Susan K. Dutcher19, Emilio Fernández20, Hideya Fukuzawa21, David González-Ballester22, Diego González-Halphen23, Armin Hallmann, Marc Hanikenne16, Michael Hippler24, William Inwood6, Kamel Jabbari25, Ming Kalanon26, Richard Kuras3, Paul A. Lefebvre11, Stéphane D. Lemaire27, Alexey V. Lobanov17, Martin Lohr28, Andrea L Manuell29, Iris Meier30, Laurens Mets31, Maria Mittag32, Telsa M. Mittelmeier33, James V. Moroney34, Jeffrey L. Moseley22, Carolyn A. Napoli33, Aurora M. Nedelcu35, Krishna K. Niyogi6, Sergey V. Novoselov17, Ian T. Paulsen, Greg Pazour5, Saul Purton36, Jean-Philippe Ral7, Diego Mauricio Riaño-Pachón37, Wayne R. Riekhof, Linda A. Rymarquis38, Michael Schroda, David B. Stern39, James G. Umen14, Robert D. Willows40, Nedra F. Wilson41, Sara L. Zimmer39, Jens Allmer42, Janneke Balk18, Katerina Bisova43, Chong-Jian Chen9, Marek Eliáš44, Karla C Gendler33, Charles R. Hauser45, Mary Rose Lamb46, Heidi K. Ledford6, Joanne C. Long1, Jun Minagawa47, M. Dudley Page1, Junmin Pan48, Wirulda Pootakham22, Sanja Roje49, Annkatrin Rose50, Eric Stahlberg30, Aimee M. Terauchi1, Pinfen Yang51, Steven G. Ball7, Chris Bowler25, Carol L. Dieckmann33, Vadim N. Gladyshev17, Pamela J. Green38, Richard A. Jorgensen33, Stephen P. Mayfield29, Bernd Mueller-Roeber37, Sathish Rajamani30, Richard T. Sayre30, Peter Brokstein2, Inna Dubchak2, David Goodstein2, Leila Hornick2, Y. Wayne Huang2, Jinal Jhaveri2, Yigong Luo2, Diego Martinez2, Wing Chi Abby Ngau2, Bobby Otillar2, Alexander Poliakov2, Aaron Porter2, Lukasz Szajkowski2, Gregory Werner2, Kemin Zhou2, Igor V. Grigoriev2, Daniel S. Rokhsar6, Daniel S. Rokhsar2, Arthur R. Grossman22 
University of California, Los Angeles1, United States Department of Energy2, University of Paris3, Duke University4, University of Massachusetts Medical School5, University of California, Berkeley6, Centre national de la recherche scientifique7, University of California, San Francisco8, Sun Yat-sen University9, University of Tennessee Health Science Center10, University of Minnesota11, Iowa State University12, Genetic Information Research Institute13, Salk Institute for Biological Studies14, Stanford University15, University of Liège16, University of Nebraska–Lincoln17, University of Cambridge18, Washington University in St. Louis19, University of Córdoba (Spain)20, Kyoto University21, Carnegie Institution for Science22, National Autonomous University of Mexico23, University of Münster24, École Normale Supérieure25, University of Melbourne26, University of Paris-Sud27, University of Mainz28, Scripps Research Institute29, Ohio State University30, University of Chicago31, University of Jena32, University of Arizona33, Louisiana State University34, University of New Brunswick35, University College London36, University of Potsdam37, Delaware Biotechnology Institute38, Boyce Thompson Institute for Plant Research39, Macquarie University40, Oklahoma State University Center for Health Sciences41, İzmir University of Economics42, Academy of Sciences of the Czech Republic43, Charles University in Prague44, St. Edward's University45, University of Puget Sound46, Hokkaido University47, Tsinghua University48, Washington State University49, Appalachian State University50, Marquette University51
12 Oct 2007-Science
TL;DR: Analyses of the Chlamydomonas genome advance the understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
Abstract: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

2,554 citations

Journal ArticleDOI
01 Aug 1986-Nature
TL;DR: The complete sequence of the chloroplast DNA from a liverwort, Marchantia polymorpha, is determined and the gene organization is deduced, including coding sequences for four kinds of ribosomal RNAs, 32 species of transfer RNAs and 55 identified open reading frames for proteins, which are separated by short A+T-rich spacers.
Abstract: Chloroplasts contain their own autonomously replicating DNA genome. The majority of proteins present in the chloroplasts are encoded by nuclear DNA, but the rest are encoded by chloroplast DNA and synthesized by the chloroplast transcription–translation machinery1–4. Although the nucleotide sequences of many chloroplast genes from various plant species have been determined, the entire gene organization of the chloroplast genome has not yet been elucidated for any species of plants. To improve our understanding of the chloroplast gene system, we have determined the complete sequence of the chloroplast DNA from a liverwort, Marchantia polymorpha, and deduced the gene organization. As reported here the liverwort chloroplast DNA contains 121,024 base pairs (bp), consisting of a set of large inverted repeats (IRA and IRB, each of 10,058 bp) separated by a small single-copy region (SSC, 19,813 bp) and a large single-copy region (LSC, 81,095 bp). We detected 128 possible genes throughout the liverwort chloroplast genome, including coding sequences for four kinds of ribosomal RNAs, 32 species of transfer RNAs and 55 identified open reading frames (ORFs) for proteins, which are separated by short A+T-rich spacers (Fig. 1). Twenty genes (8 encoding tRNAs, 12 encoding proteins) contain introns in their coding sequences. These introns can be classified as belonging to either group I or group II, as described for mitochondria5. Interestingly, seven of the identified ORFs show high homology to unidentified reading frames (URFs) found in human mitochondria6,7.

1,407 citations

Journal ArticleDOI
John L. Bowman1, Takayuki Kohchi2, Katsuyuki T. Yamato3, Jerry Jenkins4, Shengqiang Shu4, Kimitsune Ishizaki5, Shohei Yamaoka2, Ryuichi Nishihama2, Yasukazu Nakamura6, Frédéric Berger7, Catherine Adam4, Shiori S Aki8, Felix Althoff9, Takashi Araki2, Mario A. Arteaga-Vazquez10, Sureshkumar Balasubrmanian1, Kerrie Barry4, Diane Bauer4, Christian R. Boehm11, Liam N. Briginshaw1, Juan Caballero-Pérez12, Bruno Catarino13, Feng Chen14, Shota Chiyoda2, Mansi Chovatia4, Kevin M. Davies15, Mihails Delmans11, Taku Demura8, Tom Dierschke1, Tom Dierschke9, Liam Dolan13, Ana E. Dorantes-Acosta10, D. Magnus Eklund1, D. Magnus Eklund16, Stevie N. Florent1, Eduardo Flores-Sandoval1, Asao Fujiyama6, Hideya Fukuzawa2, Bence Galik, Daniel Grimanelli17, Jane Grimwood4, Ueli Grossniklaus18, Takahiro Hamada19, Jim Haseloff11, Alexander J. Hetherington13, Asuka Higo2, Yuki Hirakawa1, Yuki Hirakawa20, Hope Hundley4, Yoko Ikeda21, Keisuke Inoue2, Shin-ichiro Inoue20, Sakiko Ishida2, Qidong Jia14, Mitsuru Kakita20, Takehiko Kanazawa22, Takehiko Kanazawa19, Yosuke Kawai23, Tomokazu Kawashima24, Tomokazu Kawashima25, Megan Kennedy4, Keita Kinose2, Toshinori Kinoshita20, Yuji Kohara6, Eri Koide2, Kenji Komatsu26, Sarah Kopischke9, Minoru Kubo8, Junko Kyozuka23, Ulf Lagercrantz16, Shih-Shun Lin27, Erika Lindquist4, Anna Lipzen4, Chia-Wei Lu27, Efraín De Luna, Robert A. Martienssen28, Naoki Minamino22, Naoki Minamino19, Masaharu Mizutani5, Miya Mizutani2, Nobuyoshi Mochizuki2, Isabel Monte29, Rebecca A. Mosher30, Hideki Nagasaki, Hirofumi Nakagami31, Satoshi Naramoto23, Kazuhiko Nishitani23, Misato Ohtani8, Takashi Okamoto32, Masaki Okumura20, Jeremy Phillips4, Bernardo Pollak11, Anke Reinders33, Moritz Rövekamp18, Ryosuke Sano8, Shinichiro Sawa34, Marc W. Schmid18, Makoto Shirakawa2, Roberto Solano29, Alexander Spunde4, Noriyuki Suetsugu2, Sumio Sugano19, Akifumi Sugiyama2, Rui Sun2, Yutaka Suzuki19, Mizuki Takenaka35, Daisuke Takezawa36, Hirokazu Tomogane2, Masayuki Tsuzuki19, Takashi Ueda22, Masaaki Umeda8, John M. Ward33, Yuichiro Watanabe19, Kazufumi Yazaki2, Ryusuke Yokoyama23, Yoshihiro Yoshitake2, Izumi Yotsui, Sabine Zachgo9, Jeremy Schmutz4 
05 Oct 2017-Cell
TL;DR: Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant.

774 citations

Journal ArticleDOI
20 Sep 2018-Cell
TL;DR: This work presents a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate and is expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.

366 citations

Journal ArticleDOI
TL;DR: The phototropin family extends over a wide evolutionary range from unicellular algae to higher plants, and the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies.
Abstract: Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C termini contain a serine/threonine protein kinase domain. Here, we examine the kinetic properties of the LOV domains of Arabidopsis phot1 and phot2, rice (Oryza sativa) phot1 and phot2, and Chlamydomonas reinhardtii phot. When expressed in Escherichia coli, purified LOV domains from all phototropins examined bind FMN tightly and undergo a self-contained photocycle, characterized by fluorescence and absorption changes induced by blue light (T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada [2001] Proc Natl Acad Sci USA 98: 6969–6974; M. Salomon, J.M. Christie, E. Knieb, U. Lempert, W.R. Briggs [2000] Biochemistry 39: 9401–9410). The photocycle involves the light-induced formation of a cysteinyl adduct to the C(4a) carbon of the FMN chromophore, which subsequently breaks down in darkness. In each case, the relative quantum efficiencies for the photoreaction and the rate constants for dark recovery of LOV1, LOV2, and peptides containing both LOV domains are presented. Moreover, the data obtained from full-length Arabidopsis phot1 and phot2 expressed in insect cells closely resemble those obtained for the tandem LOV-domain fusion proteins expressed in E. coli. For both Arabidopsis and rice phototropins, the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies. Thus, in addition to differing in amino acid sequence, the phototropins can be distinguished on the basis of the photochemical cycles of their LOV domains. The LOV domains of C. reinhardtii phot also undergo light-activated spectral changes consistent with cysteinyl adduct formation. Thus, the phototropin family extends over a wide evolutionary range from unicellular algae to higher plants.

288 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
08 Sep 1989-Science
TL;DR: A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
Abstract: Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7 Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients

6,731 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence of the genome from the bacterium Haemophilus influenzae Rd.
Abstract: An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism.

5,944 citations

Journal ArticleDOI
TL;DR: Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed and worked for most species tested, which means that they may be used to study the population biology and evolution of plants.
Abstract: Six primers for the amplification of three non-coding regions of chloroplast DNA via the polymerase chain reaction (PCR) have been designed. In order to find out whether these primers were universal, we used them in an attempt to amplify DNA from various plant species. The primers worked for most species tested including algae, bryophytes, pteridophytes, gymnosperms and angiosperms. The fact that they amplify chloroplast DNA non-coding regions over a wide taxonomic range means that these primers may be used to study the population biology (in supplying markers) and evolution (inter- and probably intraspecific phylogenies) of plants.

5,212 citations

Journal ArticleDOI
TL;DR: In this paper, the authors adapted the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons.
Abstract: Temporally precise, noninvasive control of activity in well-defined neuronal populations is a long-sought goal of systems neuroscience. We adapted for this purpose the naturally occurring algal protein Channelrhodopsin-2, a rapidly gated light-sensitive cation channel, by using lentiviral gene delivery in combination with high-speed optical switching to photostimulate mammalian neurons. We demonstrate reliable, millisecond-timescale control of neuronal spiking, as well as control of excitatory and inhibitory synaptic transmission. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers.

4,411 citations