scispace - formally typeset
Search or ask a question
Author

Hieu Hoang

Bio: Hieu Hoang is an academic researcher from Singapore University of Technology and Design. The author has contributed to research in topics: Machine translation & Phrase. The author has an hindex of 21, co-authored 44 publications receiving 8185 citations. Previous affiliations of Hieu Hoang include New York University Abu Dhabi & University of Edinburgh.

Papers
More filters
Proceedings ArticleDOI
25 Jun 2007
TL;DR: An open-source toolkit for statistical machine translation whose novel contributions are support for linguistically motivated factors, confusion network decoding, and efficient data formats for translation models and language models.
Abstract: We describe an open-source toolkit for statistical machine translation whose novel contributions are (a) support for linguistically motivated factors, (b) confusion network decoding, and (c) efficient data formats for translation models and language models. In addition to the SMT decoder, the toolkit also includes a wide variety of tools for training, tuning and applying the system to many translation tasks.

6,008 citations

Proceedings Article
01 Jun 2007
TL;DR: In a number of experiments, it is shown that factored translation models lead to better translation performance, both in terms of automatic scores, as well as more grammatical coherence.
Abstract: We present an extension of phrase-based statistical machine translation models that enables the straight-forward integration of additional annotation at the word-level — may it be linguistic markup or automatically generated word classes. In a number of experiments we show that factored translation models lead to better translation performance, both in terms of automatic scores, as well as more grammatical coherence.

582 citations

Posted Content
TL;DR: Marian is an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs that can achieve high training and translation speed.
Abstract: We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed.

220 citations


Cited by
More filters
Proceedings ArticleDOI
12 Aug 2016
TL;DR: This paper introduces a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units, and empirically shows that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English-German and English-Russian by 1.3 BLEU.
Abstract: Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character ngram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English!German and English!Russian by up to 1.1 and 1.3 BLEU, respectively.

6,898 citations

Proceedings ArticleDOI
25 Jun 2007
TL;DR: An open-source toolkit for statistical machine translation whose novel contributions are support for linguistically motivated factors, confusion network decoding, and efficient data formats for translation models and language models.
Abstract: We describe an open-source toolkit for statistical machine translation whose novel contributions are (a) support for linguistically motivated factors, (b) confusion network decoding, and (c) efficient data formats for translation models and language models. In addition to the SMT decoder, the toolkit also includes a wide variety of tools for training, tuning and applying the system to many translation tasks.

6,008 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or “temporally deep”, are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are “doubly deep” in that they can be compositional in spatial and temporal “layers”. Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

4,206 citations

Posted Content
TL;DR: A novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and shows such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.
Abstract: Models based on deep convolutional networks have dominated recent image interpretation tasks; we investigate whether models which are also recurrent, or "temporally deep", are effective for tasks involving sequences, visual and otherwise. We develop a novel recurrent convolutional architecture suitable for large-scale visual learning which is end-to-end trainable, and demonstrate the value of these models on benchmark video recognition tasks, image description and retrieval problems, and video narration challenges. In contrast to current models which assume a fixed spatio-temporal receptive field or simple temporal averaging for sequential processing, recurrent convolutional models are "doubly deep"' in that they can be compositional in spatial and temporal "layers". Such models may have advantages when target concepts are complex and/or training data are limited. Learning long-term dependencies is possible when nonlinearities are incorporated into the network state updates. Long-term RNN models are appealing in that they directly can map variable-length inputs (e.g., video frames) to variable length outputs (e.g., natural language text) and can model complex temporal dynamics; yet they can be optimized with backpropagation. Our recurrent long-term models are directly connected to modern visual convnet models and can be jointly trained to simultaneously learn temporal dynamics and convolutional perceptual representations. Our results show such models have distinct advantages over state-of-the-art models for recognition or generation which are separately defined and/or optimized.

3,935 citations

Proceedings ArticleDOI
12 Aug 2016
TL;DR: The authors used target-side monolingual data for NMT and obtained state-of-the-art performance for several NMT tasks, while only using parallel data for training.
Abstract: Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel data for training. Target-side monolingual data plays an important role in boosting fluency for phrase-based statistical machine translation, and we investigate the use of monolingual data for NMT. In contrast to previous work, which combines NMT models with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the same information as a language model, and we explore strategies to train with monolingual data without changing the neural network architecture. By pairing monolingual training data with an automatic back-translation, we can treat it as additional parallel training data, and we obtain substantial improvements on the WMT 15 task English German (+2.8-3.7 BLEU), and for the low-resourced IWSLT 14 task Turkish->English (+2.1-3.4 BLEU), obtaining new state-of-the-art results. We also show that fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English->German.

2,480 citations