scispace - formally typeset
Search or ask a question
Author

Hiroaki Kawamoto

Bio: Hiroaki Kawamoto is an academic researcher from University of Tsukuba. The author has contributed to research in topics: Gait (human) & Gait training. The author has an hindex of 20, co-authored 89 publications receiving 3299 citations.


Papers
More filters
Book ChapterDOI
TL;DR: An algorithm is proposed to estimate human intentions related to walking in order to comfortably and safely support a paraplegia patient's walk.
Abstract: This paper proposes an algorithm to estimate human intentions related to walking in order to comfortably and safely support a paraplegia patient's walk. Robot Suit HAL (Hybrid Assistive Limb) has been developed for enhancement of a healthy person's activities and for support of a physically challenged person's daily life. The assisting method based on bioelectrical signals such as myoelectricity successfully supports a healthy person's walking. These bioelectrical signals, however, cannot be measured properly from a paraplegia patient. Therefore another interface that can estimate a patient's intentions without any manual controller is desired for robot control since a manual controller deprives a patient of his/her hand freedom. Estimation of a patient's intentions contributes to providing not only comfortable support but also safe support, because any inconformity between the robot suit motion and the patient motion results in his/her stumbling or falling. The proposed algorithm estimates a patient's in...

437 citations

Proceedings ArticleDOI
17 Nov 2003
TL;DR: The experiment results showed the effective power assist according to operator's intention by using the method of assist motion and assist torque to realize a power assist corresponding to theoperator's intention.
Abstract: We have developed the exoskeletal robotics suite HAL (Hybrid Assistive Leg) which is integrated with human and assists suitable power for lower limb of people with gait disorder. This study proposes the method of assist motion and assist torque to realize a power assist corresponding to the operator's intention. In the method of assist motion, we adopted Phase Sequence control which generates a series of assist motions by transiting some simple basic motions called Phase. We used the feedback controller to adjust the assist torque to maintain myoelectricity signals which were generated while performing the power assist walking. The experiment results showed the effective power assist according to operator's intention by using these control, methods.

390 citations

Book ChapterDOI
15 Jul 2002
TL;DR: HAL-3 system is introduced, improving HAL-1,2 systems which had developed previously, and a calibration method is proposed to identify parameters which relates the EMG to joint torque by using HAL-3.
Abstract: We have developed the power assistive suit, HAL (Hybrid Assistive Leg) which provide the self-walking aid for gait disorder persons or aged persons In this paper, We introduce HAL-3 system, improving HAL-1,2 systems which had developed previously EMG signal was used as the input information of power assist controller We propose a calibration method to identify parameters which relates the EMG to joint torque by using HAL-3 We could obtain suitable torque estimated by EMG and realize an apparatus that enables power to be used for walking and standing up according to the intention of the operator

374 citations

Proceedings ArticleDOI
05 Dec 2005
TL;DR: A control method of HAL using biological and motion information is proposed and, when applied, HAL could work like operator's muscles in the swinging motion, and as a consequence, the muscle activities of the operator were reduced.
Abstract: For assisting human motion, assistive devices working as muscles would be useful. A robot suit HAL (hybrid assistive limb) has been developed as an assistive device for lower limbs. Human can appropriately produce muscle contraction torque and control joint viscoelasticity by muscle effort such as co-contraction. Thus, to implement functions equivalent to human muscles using HAL, it is necessary to control viscoelasticity of HAL as well as to produce torque in accordance with operator's intention. Therefore the purpose of this study is to propose a control method of HAL using biological and motion information. In this method, HAL produces torque corresponding to muscle contraction torque by referring to the myoelectricity that is biological information to control operator's muscles. In addition, the viscoelasticities of HAL are adjusted in proportion to operator's viscoelasticity that is estimated from motion information by using an on-line parameter identification method. To evaluate the effectiveness of the proposed method, the method was applied to a swinging motion of a lower leg. When this method was applied, HAL could work like operator's muscles in the swinging motion, and as a consequence, the muscle activities of the operator were reduced. As a result of this experiment, we confirmed the effectiveness of the proposed method.

370 citations

Journal ArticleDOI
TL;DR: A power assist method of walking, standing up and going up stairs based on autonomous motion of the exoskeleton robot suit, HAL (Hybrid assistive Limb), is proposed and the effectiveness of this method is verified by experiment.
Abstract: An exoskeleton robot can replace the wearer's motion function by operating the human's body. The purpose of this study is to propose a power assist method of walking, standing up and going up stairs based on autonomous motion of the exoskeleton robot suit, HAL (Hybrid assistive Limb), and verify the effectiveness of this method by experiment. In order to realize power assist of tasks (walking, standing up and going up stairs) autonomically, we used the Phase Sequence control which generates a task by transiting some simple basic motions called Phases. A task was divided into some Phases on the basis of the task performed by a normal person. The joint moving modes were categorized into active, passive and free modes according to the characteristic of the muscle force conditions. The autonomous motions which HAL generates in each Phase were designed corresponding to one of the categorized modes. The power assist experiments were performed by using the autonomous motion with a focus on the active mode. The e...

363 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The history and state of the art of lower limb exoskeletons and active orthoses are reviewed and a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature are provided.
Abstract: In the nearly six decades since researchers began to explore methods of creating them, exoskeletons have progressed from the stuff of science fiction to nearly commercialized products. While there are still many challenges associated with exoskeleton development that have yet to be perfected, the advances in the field have been enormous. In this paper, we review the history and discuss the state-of-the-art of lower limb exoskeletons and active orthoses. We provide a design overview of hardware, actuation, sensory, and control systems for most of the devices that have been described in the literature, and end with a discussion of the major advances that have been made and hurdles yet to be overcome.

1,250 citations

Journal ArticleDOI
TL;DR: The Berkeley lower extremity exoskeleton (BLEEX) as mentioned in this paper has 7 DOF per leg, four of which are powered by linear hydraulic actuators, and the selection of the DOF, critical hardware design aspects and initial performance measurements of BLEEX are discussed.
Abstract: Wheeled vehicles are often incapable of transporting heavy materials over rough terrain or up staircases. Lower extremity exoskeletons supplement human intelligence with the strength and endurance of a pair of wearable robotic legs that support a payload. This paper summarizes the design and analysis of the Berkeley lower extremity exoskeleton (BLEEX). The anthropomorphically based BLEEX has 7 DOF per leg, four of which are powered by linear hydraulic actuators. The selection of the DOF, critical hardware design aspects, and initial performance measurements of BLEEX are discussed.

1,087 citations

Journal ArticleDOI
TL;DR: There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury, and this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance.
Abstract: There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies.

992 citations

Journal ArticleDOI
TL;DR: The essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.
Abstract: Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

959 citations

Journal ArticleDOI
TL;DR: This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic P/O devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system.
Abstract: Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user’s sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os – not as independent devices, but as actors within an ecosystem – is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user’s neuromusculoskeletal system and are practical for use in locomotive ADL.

853 citations