scispace - formally typeset
Search or ask a question
Author

Hiromi Tagoh

Bio: Hiromi Tagoh is an academic researcher from Research Institute of Molecular Pathology. The author has contributed to research in topics: Transcription factor & Chromatin. The author has an hindex of 32, co-authored 60 publications receiving 4306 citations. Previous affiliations of Hiromi Tagoh include University of Texas Health Science Center at San Antonio & Ludwig Institute for Cancer Research.


Papers
More filters
Journal ArticleDOI
01 Sep 1989-Blood
TL;DR: The findings in this report indicate that the generation of IL-6 by B cells in germinal centers of hyperplastic lymph nodes of Castleman's disease may be the key element responsible for the variety of clinical symptoms in this disease.

801 citations

Journal Article
01 Feb 1992-Surgery
TL;DR: The findings indicate that the increase in IL-6 triggered by a surgical procedure may function as a hepatocyte-stimulating factor and that monitoring of SIL-6 may be more helpful than monitoring of SCRP for estimation of inflammatory status and early detection of an acute-phase response.

334 citations

Journal ArticleDOI
TL;DR: Its functions in plasmablast differentiation are studied by identifying regulated Blimp-1 target genes and recruiting chromatin-remodeling and histone-modifying complexes to regulate its target genes.
Abstract: The transcription factor Blimp-1 is necessary for the generation of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp-1 target genes. Blimp-1 promoted the migration and adhesion of plasmablasts. It directly repressed genes encoding several transcription factors and Aicda (which encodes the cytidine deaminase AID) and thus silenced B cell-specific gene expression, antigen presentation and class-switch recombination in plasmablasts. It directly activated genes, which led to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp-1 induced the transcription of immunoglobulin genes by controlling the 3' enhancers of the loci encoding the immunoglobulin heavy chain (Igh) and κ-light chain (Igk) and, furthermore, regulated the post-transcriptional expression switch from the membrane-bound form of the immunoglobulin heavy chain to its secreted form by activating Ell2 (which encodes the transcription-elongation factor ELL2). Notably, Blimp-1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under the control of Blimp-1.

253 citations

Book ChapterDOI
TL;DR: Pax5 controls the identity of B lymphocytes throughout B cell development, and conditional loss of Pax5 allows mature B cells from peripheral lymphoid organs to develop into functional T cells in the thymus via dedifferentiation to uncommitted progenitors in the bone marrow.
Abstract: The B cell lineage of the hematopoietic system is responsible for the generation of high-affinity antibodies, which provide humoral immunity for protection against foreign pathogens. B cell commitment and development depend on many transcription factors including Pax5. Here, we review the different functions of Pax5 in regulating various aspects of B lymphopoiesis. At B cell commitment, Pax5 restricts the developmental potential of lymphoid progenitors to the B cell pathway by repressing B-lineage-inappropriate genes, while it simultaneously promotes B cell development by activating B-lymphoid-specific genes. Pax5 thereby controls gene transcription by recruiting chromatin-remodeling, histone-modifying, and basal transcription factor complexes to its target genes. Moreover, Pax5 contributes to the diversity of the antibody repertoire by controlling V(H)-DJ(H) recombination by inducing contraction of the immunoglobulin heavy-chain locus in pro-B cells, which is likely mediated by PAIR elements in the 5' region of the V(H) gene cluster. Importantly, all mature B cell types depend on Pax5 for their differentiation and function. Pax5 thus controls the identity of B lymphocytes throughout B cell development. Consequently, conditional loss of Pax5 allows mature B cells from peripheral lymphoid organs to develop into functional T cells in the thymus via dedifferentiation to uncommitted progenitors in the bone marrow. Pax5 has also been implicated in human B cell malignancies because it can function as a haploinsufficient tumor suppressor or oncogenic translocation fusion protein in B cell precursor acute lymphoblastic leukemia.

210 citations

Journal ArticleDOI
TL;DR: Regulated Pax5 target genes minimally overlap in pro‐B and mature B cells, which reflects massive expression changes between these cell types and identifies Pax5 as an important regulator of this developmental transition.
Abstract: Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B cell lineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions.

9,620 citations

Journal ArticleDOI
07 Nov 2013-Cell
TL;DR: The super-enhancers are large clusters of transcriptional enhancers that drive expression of genes that define cell identity and play key roles in human cell identity in health and in disease as mentioned in this paper.

2,832 citations

Journal ArticleDOI
TL;DR: The mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.
Abstract: Interleukin 6 (IL-6), promptly and transiently produced in response to infections and tissue injuries, contributes to host defense through the stimulation of acute phase responses, hematopoiesis, and immune reactions. Although its expression is strictly controlled by transcriptional and posttranscriptional mechanisms, dysregulated continual synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity. For this reason, tocilizumab, a humanized anti-IL-6 receptor antibody was developed. Various clinical trials have since shown the exceptional efficacy of tocilizumab, which resulted in its approval for the treatment of rheumatoid arthritis and juvenile idiopathic arthritis. Moreover, tocilizumab is expected to be effective for other intractable immune-mediated diseases. In this context, the mechanism for the continual synthesis of IL-6 needs to be elucidated to facilitate the development of more specific therapeutic approaches and analysis of the pathogenesis of specific diseases.

2,615 citations

Journal ArticleDOI
TL;DR: There is a genetically determined difference in the degree of the IL-6 response to stressful stimuli between individuals, and the reduced frequency of the potentially protective CC genotype in young S-JCA patients may contribute to its pathogenesis.
Abstract: During active disease, patients with systemic-onset juvenile chronic arthritis (S-JCA) demonstrate a rise and fall in serum interleukin-6 (IL-6) that parallels the classic quotidian fever. To investigate the possibility that this cytokine profile results from a difference in the control of IL-6 expression, we examined the 5' flanking region of the IL-6 gene for polymorphisms. A G/C polymorphism was detected at position -174. In a group of 383 healthy men and women from a general practice in North London, the frequency of the C allele was 0.403 (95% confidence interval 0.37-0.44). In comparison, 92 patients with S-JCA had a different overall genotype frequency, especially those with onset of disease at < 5 yr of age. This was mainly due to the statistically significant lower frequency of the CC genotype in this subgroup. When comparing constructs of the 5' flanking region (-550-+61 bp) in a luciferase reporter vector transiently transfected into HeLa cells, the -174C construct showed 0.624+/-0.15-fold lower expression than the -174G construct. After stimulation with LPS or IL-1, expression from the -174C construct did not significantly change after 24 h, whereas expression from the -174G construct increased by 2.35+/-0.10- and 3.60+/-0.26-fold, respectively, compared with the unstimulated level. Plasma levels of IL-6 were also measured in 102 of the healthy subjects, and the C allele was found to be associated with significantly lower levels of plasma IL-6. These results suggest that there is a genetically determined difference in the degree of the IL-6 response to stressful stimuli between individuals. The reduced frequency of the potentially protective CC genotype in young S-JCA patients may contribute to its pathogenesis. Similarly the individual's IL-6 genotype may be highly relevant in other conditions where IL-6 has been implicated, such as atherosclerosis.

2,214 citations

Journal ArticleDOI
15 Aug 1995-Blood
TL;DR: Data suggest that KSHV could play a role in the pathogenesis of MCD, especially in HIV-infected patients, which is a close association with Kaposi's sarcoma.

2,121 citations