scispace - formally typeset
Search or ask a question
Author

Hiromichi Ohashi

Bio: Hiromichi Ohashi is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Power semiconductor device & Thyristor. The author has an hindex of 40, co-authored 326 publications receiving 6260 citations. Previous affiliations of Hiromichi Ohashi include Tokyo Metropolitan University & National Institute of Advanced Industrial Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: AlGaN-GaN power high-electron mobility transistors (HEMTs) with 600-V breakdown voltage are fabricated and demonstrated as switching power devices for motor drive and power supply applications.
Abstract: AlGaN-GaN power high-electron mobility transistors (HEMTs) with 600-V breakdown voltage are fabricated and demonstrated as switching power devices for motor drive and power supply applications. The fabricated power HEMT realized the high breakdown voltage by optimized field plate technique and the low on-state resistance of 3.3 m/spl Omega/cm/sup 2/, which is 20 times lower than that or silicon MOSFETs, thanks to the high critical field of GaN material and the high mobility in 2DEG channel. The fabricated devices also demonstrated the high current density switching of 850 A/cm/sup 2/ turn-off. These results show that AlGaN-GaN power-HEMTs are one of the most promising candidates for future switching power device for power electronics applications.

409 citations

Journal ArticleDOI
TL;DR: A beamline for the X-ray free electron laser (XFEL) of SPring-8 Angstrom Compact free electron LAser (SACLA) provides hard x-ray pulses in the range 4.5-19.5 keV as mentioned in this paper.
Abstract: A beamline for the x-ray free electron laser (XFEL) of SPring-8 Angstrom Compact free electron LAser (SACLA) provides hard x-ray pulses in the range 4.5–19.5 keV. Its optical system in an optics hutch delivers a pink beam below 15 keV with either of two double-mirror systems or a monochromatic beam with a double-crystal monochromator. These XFEL beams are used for various types of measurement at experimental stations, e.g. x-ray diffraction, coherent diffraction imaging, x-ray spectroscopy and pump-and-probe measurement. The experimental stations consist of experimental hutches and control stations, and a femtosecond optical laser which is synchronized with XFEL pulses. Photon diagnostics have been performed for measuring radiation parameters in a shot-by-shot manner.

237 citations

Patent
24 Jan 2008
TL;DR: In this article, a power conversion apparatus includes a separate gate drive unit which has gate drivers connected to respective switches and interface circuits and does not need a dedicated power supply for each gate drive circuit.
Abstract: PROBLEM TO BE SOLVED: To achieve power supply to each gate drive circuit without using a separate dedicated power supply for each gate drive circuit. SOLUTION: A power conversion apparatus includes a separate gate drive unit which has gate drivers connected to respective switches and interface circuits and does not need a dedicated power supply, and a power conversion apparatus gate drive having common power supplys which supply power to the gate drive unit. Through one or a plurality of power supply terminals disposed on each interface circuit, power can be supplied from the common power supplys less in number than the switches or from a main circuit. Insulation is secured for a signal from a signal source to a gate driver to enable signal transmission. COPYRIGHT: (C)2009,JPO&INPIT

197 citations

Journal ArticleDOI
TL;DR: In this paper, a high-resolution monochromator with varied line space plane gratings (VLSG) and spherical focusing mirrors was installed in one of three branches of BL27SU in SPring-8.
Abstract: A high-resolution monochromator with varied line space plane gratings (VLSG) and spherical focusing mirrors was installed in one of three branches of BL27SU in SPring-8. The performance of the monochromator was roughly evaluated from the photo ion yield of nitrogen molecule. Furthermore, the kinetic energy of the photoelectron from Xe 5p3/2 orbit was also measured at the same photon energy with the N2 to avoid the influence of natural width. The resolving power over 104 has been confirmed at the N K-edge.

163 citations

Journal ArticleDOI
TL;DR: BL27SU of SPring-8 was constructed for soft X-ray photochemistry to perform different types of experiments, BL27SU has three branches In a branch for spectroscopic experiments, a monochromator of very high energy resolving power was required The other branches were built for experiments in need of high flux rather than energy resolution as discussed by the authors.
Abstract: BL27SU of SPring-8 was constructed for soft X-ray photochemistry To perform different types of experiments, BL27SU has three branches In a branch for spectroscopic experiments, a monochromator of very high energy resolving power was required The other branches were built for experiments in need of high flux rather than energy resolution In this report the optics and some apparatuses for photochemistry installed in BL27SU are presented

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of different topologies, control strategies and modulation techniques used by cascaded multilevel inverters in the medium-voltage inverter market is presented.
Abstract: Cascaded multilevel inverters synthesize a medium-voltage output based on a series connection of power cells which use standard low-voltage component configurations. This characteristic allows one to achieve high-quality output voltages and input currents and also outstanding availability due to their intrinsic component redundancy. Due to these features, the cascaded multilevel inverter has been recognized as an important alternative in the medium-voltage inverter market. This paper presents a survey of different topologies, control strategies and modulation techniques used by these inverters. Regenerative and advanced topologies are also discussed. Applications where the mentioned features play a key role are shown. Finally, future developments are addressed.

2,111 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive set of FDCSs for single ionization of atoms by ion-impact, the most basic atomic fragmentation reaction, brought new insight, a couple of surprises and unexpected challenges to theory at keV to GeV collision energies.
Abstract: Recoil-ion and electron momentum spectroscopy is a rapidly developing technique that allows one to measure the vector momenta of several ions and electrons resulting from atomic or molecular fragmentation. In a unique combination, large solid angles close to 4π and superior momentum resolutions around a few per cent of an atomic unit (a.u.) are typically reached in state-of-the art machines, so-called reaction-microscopes. Evolving from recoil-ion and cold target recoil-ion momentum spectroscopy (COLTRIMS), reaction-microscopes—the `bubble chambers of atomic physics'—mark the decisive step forward to investigate many-particle quantum-dynamics occurring when atomic and molecular systems or even surfaces and solids are exposed to time-dependent external electromagnetic fields. This paper concentrates on just these latest technical developments and on at least four new classes of fragmentation experiments that have emerged within about the last five years. First, multi-dimensional images in momentum space brought unprecedented information on the dynamics of single-photon induced fragmentation of fixed-in-space molecules and on their structure. Second, a break-through in the investigation of high-intensity short-pulse laser induced fragmentation of atoms and molecules has been achieved by using reaction-microscopes. Third, for electron and ion-impact, the investigation of two-electron reactions has matured to a state such that the first fully differential cross sections (FDCSs) are reported. Fourth, comprehensive sets of FDCSs for single ionization of atoms by ion-impact, the most basic atomic fragmentation reaction, brought new insight, a couple of surprises and unexpected challenges to theory at keV to GeV collision energies. In addition, a brief summary on the kinematics is provided at the beginning. Finally, the rich future potential of the method is briefly envisaged.

1,375 citations

Journal ArticleDOI
TL;DR: Using first-principles structure optimization and phonon calculations based on density functional theory, this paper predicted that, out of 88 different combinations of MX2 compounds, several of them can be stable in free-standing, single-layer honeycomb-like structures.
Abstract: Recent studies have revealed that single-layer transition-metal oxides and dichalcogenides (MX2) might offer properties superior to those of graphene. So far, only very few MX2 compounds have been synthesized as suspended single layers, and some of them have been exfoliated as thin sheets. Using first-principles structure optimization and phonon calculations based on density functional theory, we predict that, out of 88 different combinations of MX2 compounds, several of them can be stable in free-standing, single-layer honeycomb-like structures. These materials have two-dimensional hexagonal lattices and have top-view appearances as if they consisted of either honeycombs or centered honeycombs. However, their bonding is different from that of graphene; they can be viewed as a positively charged plane of transition-metal atoms sandwiched between two planes of negatively charged oxygen or chalcogen atoms. Electron correlation in transition-metal oxides was treated by including Coulomb repulsion through LDA...

1,152 citations