scispace - formally typeset
Search or ask a question
Author

Hiroshi Kawazoe

Bio: Hiroshi Kawazoe is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Thin film & Band gap. The author has an hindex of 43, co-authored 228 publications receiving 12513 citations. Previous affiliations of Hiroshi Kawazoe include Nagoya University & TDK.


Papers
More filters
Journal ArticleDOI
30 Oct 1997-Nature
TL;DR: In this paper, the authors describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency, and illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p- type conductivity up to 1'S'cm−1.
Abstract: Optically transparent oxides tend to be electrical insulators, by virtue of their large electronic bandgap (⩾3.1 eV). The most notable exceptions are doped versions of the oxides In2O3, SnO2 and ZnO—all n-type (electron) conductors—which are widely used as the transparent electrodes in flat-panel displays1,2. On the other hand, no transparent oxide exhibiting high p-type (hole) conductivity is known to exist, whereas such materials could open the way to a range of novel applications. For example, a combination of the two types of transparent conductor in the form of a pn junction could lead to a ‘functional’ window that transmits visible light yet generates electricity in response to the absorption of ultraviolet photons. Here we describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency. We illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p-type conductivity up to 1 S cm−1. Although the conductivity of our candidate material is significantly lower than that observed for the best n-type conducting oxides, it is sufficient for some applications, and demonstrates that the development of transparent p-type conductors is not an insurmountable goal.

1,871 citations

Journal ArticleDOI
TL;DR: In this article, a working hypothesis for exploring optically transparent and electrically conducting amorphous oxides is proposed on the basis of simple considerations concerning chemical bonding, and three new materials are presented as examples.
Abstract: A working hypothesis for exploring optically transparent and electrically conducting amorphous oxides is proposed on the basis of simple considerations concerning chemical bonding. The hypothesis predicts that amorphous oxides composed of heavy metal cations with an electronic configuration of ( n − 1)d 10 ns 0 may be converted into transparent conducting amorphous oxides when doped by Li ion implantation or heating at temperatures below crystallization. Three new materials, amorphous Cd 2 GeO 4 , AgSbO 3 and Cd 2 PbO 4 , have been prepared as examples.

1,180 citations

Patent
12 Jul 1999
TL;DR: In this paper, the oxide thin film formed on a substrate contains copper oxide and strontium oxide as a main component and exhibits p-type conductivity at a bandgap of at least 2 eV.
Abstract: An object of the invention is to provide an oxide thin film which exhibits a widegap or transparency and p-type conductivity although it has heretofore been very difficult to form. The oxide thin film formed on a substrate contains copper oxide and strontium oxide as a main component and exhibits p-type conductivity at a bandgap of at least 2 eV.

1,087 citations

Journal ArticleDOI
TL;DR: In this article, β-Ga2O3 single crystals were grown by the floating zone method and their conductivity along the b axis was controlled from <10−9 to 38 Ω−1 1 cm−1 by changing the growth atmosphere.
Abstract: β-Ga2O3 single crystals were grown by the floating zone method and their conductivity along the b axis was controlled from <10−9 to 38 Ω−1 cm−1 by changing the growth atmosphere. By using feed rods doped with Sn, the grown crystal became highly conductive even under oxidative atmosphere. The optical transmission spectra showed that the β-Ga2O3 single crystal with 0.32 mm was transparent in the visible and ultraviolet region, with 20% transmittance at the fourth-harmonic wave of the Nd:YAG laser (266 nm). The band-gap widening was observed with the increasing of the carrier concentration. It is expected that the light of the KrF laser can be transmitted in the heavily doped β-Ga2O3.

541 citations

Journal ArticleDOI
TL;DR: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials as mentioned in this paper, however, interest in these wide-gap oxides as conductive materials has not been strong.
Abstract: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials. Many metallic oxides have wide bandgaps because of the significant contribution of ionic character to the chemical bonds between metallic cations and oxide ions. Their ionic nature simultaneously suppresses the formation of easily ionizable shallow donors or acceptors and enhances the localization of electrons and positive holes. Thus it is understandable that interest in these wide-gap oxides as conductive materials has not been strong.

472 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent.
Abstract: This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references)

8,850 citations

Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations

Journal ArticleDOI
TL;DR: Fiber Bragg grating (FBG) technology has been extensively studied in the literature as mentioned in this paper, where the basic techniques for fiber grating fabrication, their characteristics, and the fundamental properties of fiber gratings are described.
Abstract: The historical beginnings of photosensitivity and fiber Bragg grating (FBG) technology are recounted. The basic techniques for fiber grating fabrication, their characteristics, and the fundamental properties of fiber gratings are described. The many applications of fiber grating technology are tabulated, and some selected applications are briefly described.

2,905 citations