scispace - formally typeset
Search or ask a question
Author

Hiroshi Kimura

Other affiliations: University of Oxford, Hokkaido University, Kyoto University  ...read more
Bio: Hiroshi Kimura is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Chromatin & Histone. The author has an hindex of 75, co-authored 421 publications receiving 19908 citations. Previous affiliations of Hiroshi Kimura include University of Oxford & Hokkaido University.
Topics: Chromatin, Histone, Medicine, Histone H3, Histone code


Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal that the inner core of the nucleosome is very stable, whereas H2B on the surface of active nucleosomes exchanges continually, unlike H3-GFP and H4-G FP, which are commonly thought to represent transcriptionally active chromatin.
Abstract: Histones H2A and H2B form part of the same nucleosomal structure as H3 and H4. Stable HeLa cell lines expressing histones H2B, H3, and H4 tagged with green fluorescent protein (GFP) were established; the tagged molecules were assembled into nucleosomes. Although H2B-GFP was distributed like DNA, H3-GFP and H4-GFP were concentrated in euchromatin during interphase and in R-bands in mitotic chromosomes. These differences probably result from an unregulated production of tagged histones and differences in exchange. In both single cells and heterokaryons, photobleaching revealed that H2B-GFP exchanged more rapidly than H3-GFP and H4-GFP. About 3% of H2B exchanged within minutes, whereas ∼40% did so slowly (t1/2 ∼ 130 min). The rapidly exchanging fraction disappeared in 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole and so may represent H2B in transcriptionally active chromatin. The slowly exchanging fraction was probably associated with chromatin domains surrounding active units. H3-GFP and H4-GFP were assembled into chromatin when DNA was replicated, and then >80% remained bound permanently. These results reveal that the inner core of the nucleosome is very stable, whereas H2B on the surface of active nucleosomes exchanges continually.

690 citations

Journal ArticleDOI
17 Feb 2010-Nature
TL;DR: It is proposed that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.
Abstract: Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for >10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Kruppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.

675 citations

Journal ArticleDOI
TL;DR: The development of G4 ChIP–seq, an antibody-based G4 chromatin immunoprecipitation and high-throughput sequencing approach, shows that regulatory, nucleosome-depleted chromatin and elevated transcription shape the endogenous human G4 DNA landscape.
Abstract: European Molecular Biology Organization (EMBO Long-Term Fellowship), University of Cambridge, Cancer Research UK (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z)

585 citations

Journal ArticleDOI
08 Oct 2010-Science
TL;DR: It is demonstrated that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, which is a member of the chromosomal passenger complex (CPC).
Abstract: A hallmark of mitosis is the appearance of high levels of histone phosphorylation, yet the roles of these modifications remain largely unknown. Here, we demonstrate that histone H3 phosphorylated at threonine 3 is directly recognized by an evolutionarily conserved binding pocket in the BIR domain of Survivin, which is a member of the chromosomal passenger complex (CPC). This binding mediates recruitment of the CPC to chromosomes and the resulting activation of its kinase subunit Aurora B. Consistently, modulation of the kinase activity of Haspin, which phosphorylates H3T3, leads to defects in the Aurora B-dependent processes of spindle assembly and inhibition of nuclear reformation. These findings establish a direct cellular role for mitotic histone H3T3 phosphorylation, which is read and translated by the CPC to ensure accurate cell division.

459 citations

Journal ArticleDOI
23 Apr 2015-Cell
TL;DR: The results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals, and native elongating transcript sequencing technology for mammalian chromatin (mNET-seq) provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.

458 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: The current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies are discussed.
Abstract: Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Global changes in the epigenetic landscape are a hallmark of cancer. The initiation and progression of cancer, traditionally seen as a genetic disease, is now realized to involve epigenetic abnormalities along with genetic alterations. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer including DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs, specifically microRNA expression. The reversible nature of epigenetic aberrations has led to the emergence of the promising field of epigenetic therapy, which is already making progress with the recent FDA approval of three epigenetic drugs for cancer treatment. In this review, we discuss the current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies.

4,033 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: This Review highlights advances in the understanding of chromatin regulation and discusses how such regulation affects the binding of transcription factors as well as the initiation and elongation steps of transcription.

3,424 citations