scispace - formally typeset
Search or ask a question
Author

Hiroshi Nikaido

Other affiliations: University of California, Davis
Bio: Hiroshi Nikaido is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Bacterial outer membrane & Efflux. The author has an hindex of 103, co-authored 241 publications receiving 41880 citations. Previous affiliations of Hiroshi Nikaido include University of California, Davis.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the development in the field since the previous review and begins to understand how this bilayer of the outer membrane can retard the entry of lipophilic compounds, owing to increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopoly Saccharide structure is modified by environmental conditions.
Abstract: Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.

3,585 citations

Journal ArticleDOI
TL;DR: It is becoming increasingly clear that the outer membrane is very important in the physiology of gram-negative bacteria in making them resistant to host defense factors such as lysozyme, P-lysin, and various leukocyte proteins.

2,357 citations

Journal ArticleDOI
TL;DR: Differences in mycolic acid structure may affect the fluidity and permeability of the bilayer, and may explain the different sensitivity levels of various mycobacterial species to lipophilic inhibitors.
Abstract: Mycobacteria, members of which cause tuberculosis and leprosy, produce cell walls of unusually low permeability, which contribute to their resistance to therapeutic agents. Their cell walls contain large amounts of C60-C90 fatty acids, mycolic acids, that are covalently linked to arabinogalactan. Recent studies clarified the unusual structures of arabinogalactan as well as of extractable cell wall lipids, such as trehalose-based lipooligosaccharides, phenolic glycolipids, and glycopeptidolipids. Most of the hydrocarbon chains of these lipids assemble to produce an asymmetric bilayer of exceptional thickness. Structural considerations suggest that the fluidity is exceptionally low in the innermost part of bilayer, gradually increasing toward the outer surface. Differences in mycolic acid structure may affect the fluidity and permeability of the bilayer, and may explain the different sensitivity levels of various mycobacterial species to lipophilic inhibitors. Hydrophilic nutrients and inhibitors, in contra...

1,825 citations

Journal ArticleDOI
15 Apr 1994-Science
TL;DR: As the pharmaceutical industry succeeds in producing agents that can overcome specific mechanisms of bacterial resistance, less specific resistance mechanisms such as permeability barriers and multidrug active efflux may become increasingly significant in the clinical setting.
Abstract: Some species of bacteria have low-permeability membrane barriers and are thereby "intrinsically" resistant to many antibiotics; they are selected out in the multitude of antibiotics present in the hospital environment and thus cause many hospital-acquired infections. Some strains of originally antibiotic-susceptible species may also acquire resistance through decreases in the permeability of membrane barriers. Another mechanism for preventing access of drugs to targets is the membrane-associated energy-driven efflux, which plays a major role in drug resistance, especially in combination with the permeation barrier. Recent results indicate the existence of bacterial efflux systems of extremely broad substrate specificity, in many ways reminiscent of the multidrug resistance pump of mammalian cells. One such system seems to play a major role in the intrinsic resistance of Pseudomonas aeruginosa, a common opportunistic pathogen. As the pharmaceutical industry succeeds in producing agents that can overcome specific mechanisms of bacterial resistance, less specific resistance mechanisms such as permeability barriers and multidrug active efflux may become increasingly significant in the clinical setting.

1,476 citations

Journal ArticleDOI
TL;DR: This review discusses the current knowledge on the molecular mechanisms involved in both types of resistance in bacteria.
Abstract: Large amounts of antibiotics used for human therapy, as well as for farm animals and even for fish in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance.

1,331 citations


Cited by
More filters
Journal ArticleDOI
08 Sep 1989-Science
TL;DR: A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients.
Abstract: Overlapping complementary DNA clones were isolated from epithelial cell libraries with a genomic DNA segment containing a portion of the putative cystic fibrosis (CF) locus, which is on chromosome 7 Transcripts, approximately 6500 nucleotides in size, were detectable in the tissues affected in patients with CF The predicted protein consists of two similar motifs, each with (i) a domain having properties consistent with membrane association and (ii) a domain believed to be involved in ATP (adenosine triphosphate) binding A deletion of three base pairs that results in the omission of a phenylalanine residue at the center of the first predicted nucleotide-binding domain was detected in CF patients

6,731 citations

Journal ArticleDOI
TL;DR: In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented and several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibits protein synthesis or inhibit enzymatic activity.
Abstract: Antimicrobial peptides are an abundant and diverse group of molecules that are produced by many tissues and cell types in a variety of invertebrate, plant and animal species. Their amino acid composition, amphipathicity, cationic charge and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of antimicrobial peptide activity, their relevance to how peptides damage and kill microorganisms still need to be clarified. Recently, there has been speculation that transmembrane pore formation is not the only mechanism of microbial killing. In fact several observations suggest that translocated peptides can alter cytoplasmic membrane septum formation, inhibit cell-wall synthesis, inhibit nucleic-acid synthesis, inhibit protein synthesis or inhibit enzymatic activity. In this review the different models of antimicrobial-peptide-induced pore formation and cell killing are presented.

5,102 citations

Journal ArticleDOI
TL;DR: Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports.
Abstract: Antiseptics and disinfectants are extensively used in hospitals and other health care settings for a variety of topical and hard-surface applications A wide variety of active chemical agents (biocides) are found in these products, many of which have been used for hundreds of years, including alcohols, phenols, iodine, and chlorine Most of these active agents demonstrate broad-spectrum antimicrobial activity; however, little is known about the mode of action of these agents in comparison to antibiotics This review considers what is known about the mode of action and spectrum of activity of antiseptics and disinfectants The widespread use of these products has prompted some speculation on the development of microbial resistance, in particular whether antibiotic resistance is induced by antiseptics or disinfectants Known mechanisms of microbial resistance (both intrinsic and acquired) to biocides are reviewed, with emphasis on the clinical implications of these reports

4,243 citations

Journal ArticleDOI
31 Aug 2000-Nature
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.

4,220 citations

Journal ArticleDOI
TL;DR: This chapter discusses thebuilding blocks of the Transmembrane Complex, and some of the properties of these blocks have changed since the publication of the original manuscript in 1993.
Abstract: INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 DOMAIN ORGANIZATION: The Typical ABC Transporter . . . . . . . . . . . . . . . . . 73 THE TRANSMEMBRANE DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 The "Two-Times-Six" Helix Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Sequence Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 THE ATP-BINDING DOMAINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 PERIPLASMIC-BINDING PROTEINS ... . 84 SUBSTRATE SPECIFICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 THE ROLE OF ATP : Coupling Energy to Transport . . . . . . . . . . . . . . . . . . . " . . . . . 88 COVALENT MODIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 CELLULAR FUNCTIONS OF ABC TRANSPORTERS . . . . . . . . . . . . . . . . . . . . . . . 9 1 Nutrient Uptake . . . . . . . . . . . . ....... . 9 1 Protein Export ....... . .... . . . . . . . . . . . . ... . ......... . ...... . ... . .. 93 Intracellular Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Regulation of ABC Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Regulation by ABC Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Drug and Antibiotic Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Channel Functions: CFTR and P-glycoprotein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 MECHANISMS OF SOLUTE TRANSLOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Structure of the Transmembrane Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Channels and Transporters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 I Energy Coupling andlor Gating . 102 CONCLUDING REMARKS . 103

3,937 citations