scispace - formally typeset
Search or ask a question
Author

Hiroshi Yamashita

Bio: Hiroshi Yamashita is an academic researcher from German Aerospace Center. The author has contributed to research in topics: Air traffic control & Aviation. The author has an hindex of 7, co-authored 18 publications receiving 165 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The WeCare project (Utilizing Weather information for Climate efficient and eco-efficient future aviation) as mentioned in this paper aimed at finding solutions for reducing the climate impact of aviation based on an improved understanding of the atmospheric impact from aviation by making use of measurements and modeling approaches.

73 citations

Journal ArticleDOI
01 Aug 2017
TL;DR: In this paper, the authors present a mathematical framework for environmental assessment and optimisation of aircraft trajectories based on environmental change functions (ECFs), which represent environmental impact due to changes in air quality, noise and climate impact.
Abstract: Comprehensive assessment of the environmental aspects of flight movements is of increasing interest to the aviation sector as a potential input for developing sustainable aviation strategies that consider climate impact, air quality and noise issues simultaneously. However, comprehensive assessments of all three environmental aspects do not yet exist and are in particular not yet operational practice in flight planning. The purpose of this study is to present a methodology which allows to establish a multi-criteria environmental impact assessment directly in the flight planning process. The method expands a concept developed for climate optimisation of aircraft trajectories, by representing additionally air quality and noise impacts as additional criteria or dimensions, together with climate impact of aircraft trajectory. We present the mathematical framework for environmental assessment and optimisation of aircraft trajectories. In that context we present ideas on future implementation of such advanced meteorological services into air traffic management and trajectory planning by relying on environmental change functions (ECFs). These ECFs represent environmental impact due to changes in air quality, noise and climate impact. In a case study for Europe prototype ECFs are implemented and a performance assessment of aircraft trajectories is performed for a one-day traffic sample. For a single flight fuel-optimal versus climate-optimized trajectory solution is evaluated using prototypic ECFs and identifying mitigation potential. The ultimate goal of such a concept is to make available a comprehensive assessment framework for environmental performance of aircraft operations, by providing key performance indicators on climate impact, air quality and noise, as well as a tool for environmental optimisation of aircraft trajectories. This framework would allow studying and characterising changes in traffic flows due to environmental optimisation, as well as studying trade-offs between distinct strategic measures.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the impacts on flight trajectories, such as lateral and vertical changes, when avoiding the formation of persistent contrails for transatlantic flights were studied, and the trade-off between the flight time and contrail distance showed a large daily variability, meaning for the same increase in flight time, the reduction in contrail distances varies from 20 to 80 depending on the daily meteorological situation.
Abstract: This paper studies the impacts on flight trajectories, such as lateral and vertical changes, when avoiding the formation of persistent contrails for transatlantic flights. A sophisticated Earth-System Model (EMAC) coupled with a flight routing submodel (AirTraf) and a contrail submodel (CONTRAIL) is used to optimize flight trajectories concerning the flight time and the flight distance through contrail forming regions (contrail distance). All the trajectories are calculated taking into account the effects of the actual and local meteorological parameters, e.g., wind, temperature, relative humidity, etc. A full-year simulation has been conducted based on a daily flight schedule of 103 transatlantic flights. The trade-off between the flight time and contrail distance shows a large daily variability, meaning for the same increase in flight time, the reduction in contrail distance varies from 20 to 80 depending on the daily meteorological situation. The results confirm that the overall changes in flight trajectories follow a seasonal cycle corresponding to the nature of the potential contrail coverage. In non-summer seasons, the southward and upward shifts of the trajectories are favorable to avoid the contrail formation. In summer, the northward and upward shifts are preferred. A partial mitigation strategy for up to 40 reduction in contrail distance can be achieved throughout all the seasons with a negligible increase in flight time (less than 2), which represents a reasonable trade-off between flight time increase and contrail avoidance.

28 citations

Journal ArticleDOI
TL;DR: The results clearly show that AirTraf 2.0 can find the different families of optimum flight trajectories (three-dimensional) for specific routing options; those trajectories minimize the corresponding objective functions successfully.
Abstract: . Aviation contributes to climate change, and the climate impact of aviation is expected to increase further. Adaptations of aircraft routings in order to reduce the climate impact are an important climate change mitigation measure. The air traffic simulator AirTraf, as a submodel of the European Center HAMburg general circulation model (ECHAM) and Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model, enables the evaluation of such measures. For the first version of the submodel AirTraf, we concentrated on the general setup of the model, including departure and arrival, performance and emissions, and technical aspects such as the parallelization of the aircraft trajectory calculation with only a limited set of optimization possibilities (time and distance). Here, in the second version of AirTraf, we focus on enlarging the objective functions by seven new options to enable assessing operational improvements in many more aspects including economic costs, contrail occurrence, and climate impact. We verify that the AirTraf setup, e.g., in terms of number and choice of design variables for the genetic algorithm, allows us to find solutions even with highly structured fields such as contrail occurrence. This is shown by example simulations of the new routing options, including around 100 North Atlantic flights of an Airbus A330 aircraft for a typical winter day. The results clearly show that AirTraf 2.0 can find the different families of optimum flight trajectories (three-dimensional) for specific routing options; those trajectories minimize the corresponding objective functions successfully. The minimum cost option lies between the minimum time and the minimum fuel options. Thus, aircraft operating costs are minimized by taking the best compromise between flight time and fuel use. The aircraft routings for contrail avoidance and minimum climate impact reduce the potential climate impact which is estimated by using algorithmic climate change functions, whereas these two routings increase the aircraft operating costs. A trade-off between the aircraft operating costs and the climate impact is confirmed. The simulation results are compared with literature data, and the consistency of the submodel AirTraf 2.0 is verified.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the start/unstart characteristics of a finite and rectangular supersonic biplane wing with an aspect ratio of 0.75 and 2.5.
Abstract: This study describes the start/unstart characteristics of a finite and rectangular supersonic biplane wing. Two wing models were tested in wind tunnels with aspect ratios of 0.75 (model A) and 2.5 (model B). The models were composed of a Busemann biplane section. The tests were carried out using supersonic and transonic wind tunnels over a Mach number range of with angles of attack of 0°, 2°, and 4°. The Schlieren system was used to observe the flow characteristics around the models. The experimental results showed that these models had start/unstart characteristics that differed from those of the Busemann biplane (two dimensional) owing to three-dimensional effects. Models A and B started at lower Mach numbers than the Busemann biplane. The characteristics also varied with aspect ratio: model A () started at a lower Mach number than model B () owing to the lower aspect ratio. Model B was located in the double solution domain for the start/unstart characteristics at , and model B was in either the start or unstart state at . Once the state was determined, either state was stable.

19 citations


Cited by
More filters
01 Jan 2000
TL;DR: In this paper, a parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters, including tropical, mid-latitude, and subarctic summer and winter atmospheres.
Abstract: A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm−2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

163 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze and compare two CO 2 trading schemes for aviation from an environmental and competition perspective: the EU Emissions Trading Scheme (EU ETS) and the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

87 citations

Journal ArticleDOI
TL;DR: A review of recent research outcomes in downstream flow choking-driven unstart is presented in this paper, where three different flow choking mechanisms are discussed: flow blockage, mass addition, and heat release from combustion reactions.

87 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored the perspective of sustainability when digital transformation is adopted by one organization, although it was not the first goal targeted, and two different cases are analyzed, covering manufacturing and service industries.
Abstract: This paper aims at exploring the perspective of sustainability when digital transformation is adopted by one organization, although it was not the first goal targeted. Two different cases are analyzed, covering manufacturing and service industries. In those cases different factors will be analyzed, mainly focused on the positive effects of knowledge creation facilitated by direct or indirect application of digitalization. Specific analysis of different cases were carried out to identify different initiatives and the impact on environmental performance. The positive effects of the institutional dimension were also assessed.

83 citations