scispace - formally typeset
Search or ask a question
Author

Hiroshi Yanagi

Bio: Hiroshi Yanagi is an academic researcher from University of Yamanashi. The author has contributed to research in topics: Thin film & Band gap. The author has an hindex of 39, co-authored 124 publications receiving 10299 citations. Previous affiliations of Hiroshi Yanagi include Osaka University & Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
30 Oct 1997-Nature
TL;DR: In this paper, the authors describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency, and illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p- type conductivity up to 1'S'cm−1.
Abstract: Optically transparent oxides tend to be electrical insulators, by virtue of their large electronic bandgap (⩾3.1 eV). The most notable exceptions are doped versions of the oxides In2O3, SnO2 and ZnO—all n-type (electron) conductors—which are widely used as the transparent electrodes in flat-panel displays1,2. On the other hand, no transparent oxide exhibiting high p-type (hole) conductivity is known to exist, whereas such materials could open the way to a range of novel applications. For example, a combination of the two types of transparent conductor in the form of a pn junction could lead to a ‘functional’ window that transmits visible light yet generates electricity in response to the absorption of ultraviolet photons. Here we describe a strategy for identifying oxide materials that should combine p-type conductivity with good optical transparency. We illustrate the potential of this approach by reporting the properties of thin films of CuAlO2, a transparent oxide having room-temperature p-type conductivity up to 1 S cm−1. Although the conductivity of our candidate material is significantly lower than that observed for the best n-type conducting oxides, it is sufficient for some applications, and demonstrates that the development of transparent p-type conductors is not an insurmountable goal.

1,871 citations

Journal ArticleDOI
TL;DR: Magnetic and electrical resistivity measurements verify the occurrence of the superconducting transition at approximately 4 K in an iron-based layered oxy-pnictide LaOFeP.
Abstract: We report superconductivity in an iron-based layered oxy-pnictide LaOFeP. LaOFeP is composed of an alternate stack of lanthanum oxide (La3+O2-) and iron pnictide (Fe2+P3-) layers. Magnetic and electrical resistivity measurements verify the occurrence of the superconducting transition at ∼4 K.

1,399 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported that tin monoxide (SnO) has a high hole mobility and produces good p-type oxide thin-film transistors (TFTs).
Abstract: This paper reports that among known p-type oxide semiconductors, tin monoxide (SnO) has a high hole mobility and produces good p-type oxide thin-film transistors (TFTs) Device-quality SnO films were grown epitaxially on (001) yttria-stabilized zirconia substrates at 575°C by pulsed laser deposition These exhibited a Hall mobility of 24cm2V−1s−1 at room temperature Top-gated TFTs, using epitaxial SnO channels, exhibited field-effect mobilities of 13cm2V−1s−1, on/off current ratios of ∼102, and threshold voltages of 48V

612 citations

Journal ArticleDOI
TL;DR: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials as mentioned in this paper, however, interest in these wide-gap oxides as conductive materials has not been strong.
Abstract: Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials. Many metallic oxides have wide bandgaps because of the significant contribution of ionic character to the chemical bonds between metallic cations and oxide ions. Their ionic nature simultaneously suppresses the formation of easily ionizable shallow donors or acceptors and enhances the localization of electrons and positive holes. Thus it is understandable that interest in these wide-gap oxides as conductive materials has not been strong.

472 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the carrier transport properties in amorphous oxide semiconductor InGaZnO 4 (a-IGZO) thin films using temperature dependence of Hall measurements and found that Hall mobility increased distinctly as carrier concentration increased.

446 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Journal ArticleDOI
TL;DR: It is reported that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site and exhibits a trapezoid shape dependence on the F- content.
Abstract: We report that a layered iron-based compound LaOFeAs undergoes superconducting transition under doping with F- ions at the O2- site. The transition temperature (Tc) exhibits a trapezoid shape dependence on the F- content, with the highest Tc of ∼26 K at ∼11 atom %.

6,643 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
23 May 2003-Science
TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Abstract: We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO 3 (ZnO) 5 , as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of ∼10 6 and a field-effect mobility of ∼80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

2,724 citations