scispace - formally typeset
Search or ask a question
Author

Hiroshi Yokoyama

Bio: Hiroshi Yokoyama is an academic researcher from Kent State University. The author has contributed to research in topics: Liquid crystal & Phase (matter). The author has an hindex of 46, co-authored 457 publications receiving 8999 citations. Previous affiliations of Hiroshi Yokoyama include Niigata University & Liquid Crystal Institute.


Papers
More filters
Journal ArticleDOI
14 Nov 2002-Nature
TL;DR: This work has demonstrated how bistability can be robustly engineered into a nematic LC device, by patterning a substrate with an orientational chequerboard pattern that enforces orthogonal LC alignment in neighbouring square domains, and extended this symmetry approach to obtain a tristable surface-aligned nematicLC.
Abstract: It has long been appreciated that liquid-crystal (LC) devices in which the LC molecules adopt multiple stable orientations could drastically reduce the power consumption required for high-information-content displays. But for the commonly used nematic LCs, which are intrinsically uniaxial in symmetry, no industrially feasible multi-stable LC device has been realized1,2,3,4,5,6,7. Recently we demonstrated how bistability can be robustly engineered into a nematic LC device, by patterning a substrate with an orientational chequerboard pattern that enforces orthogonal LC alignment in neighbouring square domains8,9. As a result of the four-fold symmetry of the pattern, the two diagonal axes of the chequerboard become equally stable macroscopic orientations. Here we extend this symmetry approach to obtain a tristable surface-aligned nematic LC. A microscopic pattern exhibiting six-fold symmetry is inscribed on a polyimide surface using the stylus of an atomic force microscope. The hexagonal symmetry of the microscopic orientational domains in turn gives rise to three stable macroscopic LC orientations, which are mutually switchable by an in-plane electric field. The resulting switching mode is surface driven, and hence should be compatible with demanding flexible display applications.

301 citations

Journal ArticleDOI
TL;DR: In this article, the anchoring energy function at the interface between 5CB(pentylcyanobiphenyl) and an obliquely evaporated SiO was determined by measuring the birefringence and the capacitance of a 56μm-thick cell up to 150 V rms at 0.23°C below the clearing temperature.
Abstract: We show that the anchoring energy function, i.e., the anisotropic part of the interfacial free energy, at a nematic liquid crystal‐wall interface can be determined uniquely without a numerical fitting procedure, when the integrated birefringence of a liquid crystal cell with a thickness much larger than the extrapolation length is measured as a function of an electric or magnetic field well above the Freedericksz threshold. The precision of the present method is closely argued, showing that the resulting anchoring energy function is reasonably insensitive to the uncertainties in the material parameters and in the cell thickness. As an example, the anchoring energy function at the interface between 5CB(pentylcyanobiphenyl) and an obliquely evaporated SiO was determined for the first time, by measuring the birefringence and the capacitance of a 56‐μm‐thick cell up to 150 V rms at 0.23 °C below the clearing temperature. A saturation of the field‐induced distortion was clearly observed at about 100 V rms. The...

281 citations

Journal ArticleDOI
TL;DR: This work introduces two different types of spatial distributions of forces, detected between the particles accompanied by hyperbolic hedgehog defects, which lead to specific particle arrangements, which are stabilized by the balance of the orientational stress field of nematics.
Abstract: Interparticle forces in a nematic liquid-crystal colloid have been directly observed by the dual beam laser trapping method with pN sensitivity. We introduce two different types of spatial distributions of forces, detected between the particles accompanied by hyperbolic hedgehog defects. These force distributions lead to specific particle arrangements, which are both stabilized by the balance of the orientational stress field of nematics. On the basis of these results, we propose novel artificial construction for multiparticle regular arrangements.

187 citations

Journal ArticleDOI
TL;DR: Reversible luminescence intensity variations and spectral shifts of QD clusters show the potential for developing sensors based on QD nanoscale assemblies and reversible thermal trapping of electrons at inter-QD interfaces and dipole-dipole interactions in clusters.
Abstract: The formation of narrow size dispersed and nanometer size aggregates (clusters) of cadmium selenide (CdSe) quantum dots (QDs) and their temperature-sensitive photoluminescence (PL) spectral properties close to room temperature (298 K) are discussed. CdSe QDs formed stable clusters with an average diameter of ∼27 nm in the absence of coordinating solvents. Using transmission electron microscopy (TEM) imaging, we identified the association of individual QDs with 2−5 nm diameters into clusters of uniform size. A suspension of these clusters in different solvents exhibited reversible PL intensity changes and PL spectral shifts which were correlated with temperature. Although the PL intensity of CdSe QDs encapsulated in host matrixes and the solid state showed a response to temperature under cryogenic conditions, the current work identified for the first time QD clusters showing temperature-sensitive PL intensity variations and spectral shifts at moderate temperatures above room temperature. Temperature-sensit...

180 citations

Journal ArticleDOI
TL;DR: In this article, the growth rate and electrical character of nanostructures produced by scanned probe oxidation are investigated by integrating an in situ electrical force characterization technique, scanning Maxwell-stress microscopy, into the fabrication process.
Abstract: The growth rate and electrical character of nanostructures produced by scanned probe oxidation are investigated by integrating an in situ electrical force characterization technique, scanning Maxwell-stress microscopy, into the fabrication process. Simultaneous topographical, capacitance, and surface potential data are obtained for oxide features patterned on n- and p-type silicon and titanium thin-film substrates. The electric field established by an applied voltage pulse between the probe tip and substrate depends upon reactant and product ion concentrations associated with the water meniscus at the tip-substrate junction and within the growing oxide film. Space-charge effects are consistent with the rapid decline of high initial growth rates, account for observed doping and voltage-pulse dependencies, and provide a basis for understanding local density variations within oxide features. An obvious method for avoiding the buildup of space charge is to employ voltage modulation and other dynamic pulse-sha...

158 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: The exciting successes in taming molecular-level movement thus far are outlined, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion are highlighted.
Abstract: The widespread use of controlled molecular-level motion in key natural processes suggests that great rewards could come from bridging the gap between the present generation of synthetic molecular systems, which by and large rely upon electronic and chemical effects to carry out their functions, and the machines of the macroscopic world, which utilize the synchronized movements of smaller parts to perform specific tasks. This is a scientific area of great contemporary interest and extraordinary recent growth, yet the notion of molecular-level machines dates back to a time when the ideas surrounding the statistical nature of matter and the laws of thermodynamics were first being formulated. Here we outline the exciting successes in taming molecular-level movement thus far, the underlying principles that all experimental designs must follow, and the early progress made towards utilizing synthetic molecular structures to perform tasks using mechanical motion. We also highlight some of the issues and challenges that still need to be overcome.

2,301 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Book ChapterDOI
01 Jan 2014
TL;DR: In this paper, the authors describe the story of the recent developments and the future perspectives in physics of liquid crystals, especially focusing on the contributions by Japanese research groups for the last decade, and present new subjects unmentioned in the book.
Abstract: Over the 100 years since its discovery, liquid crystals have been the intriguing subject for both academia and industries. The textbook of de Gennes The Physics of Liquid Crystals published in 1974 is still the bible for many LC researchers, but new subjects unmentioned in the book have also risen for these years. This chapter describes the story of the recent developments and the future perspectives in physics of liquid crystals, especially focusing on the contributions by Japanese research groups for the last decade.

2,005 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods and present a detailed quantitative comparison between theoretical simulations and experiment.

1,908 citations