scispace - formally typeset
Search or ask a question
Author

Hiroto Kawakami

Other affiliations: Toshiba
Bio: Hiroto Kawakami is an academic researcher from Harvard University. The author has contributed to research in topics: Signal & Transmission (telecommunications). The author has an hindex of 17, co-authored 74 publications receiving 1426 citations. Previous affiliations of Hiroto Kawakami include Toshiba.


Papers
More filters
Proceedings ArticleDOI
16 Sep 2012
TL;DR: In this article, the authors demonstrate 1.01-Pb/s transmission over 52 km with the highest aggregate spectral efficiency of 91.4 b/s/Hz by using low-crosstalk one-ring-structured 12-core fiber.
Abstract: (40-Word Limit): We demonstrate 1.01-Pb/s transmission over 52 km with the highest aggregate spectral efficiency of 91.4 b/s/Hz by using low-crosstalk one-ring-structured 12-core fiber. Our multi-core fiber and compact fan-in/fan-out devices are designed to support high-order modulation formats up to 32-QAM in SDM transmission.

323 citations

Proceedings ArticleDOI
04 Mar 2012
TL;DR: In this paper, the authors demonstrate 1023 Tb/s transmission over 3×80 km of PSCF by employing 548-Gb/s PDM-64QAM single-carrier frequency division multiplexing (SC-FDM) signals with pilot tone and 112-THz ultra-wideband low-noise amplification in the C- and extended L-bands.
Abstract: We demonstrate 1023 Tb/s transmission over 3×80 km of PSCF by employing 548-Gb/s PDM-64QAM single-carrier frequency-division-multiplexing (SC-FDM) signals with pilot tone and 112-THz ultra-wideband low-noise amplification in the C- and extended L-bands

166 citations

Proceedings ArticleDOI
09 Mar 2014
TL;DR: Dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core × 3-mode fiber with 247.9-b/s/Hz spectral efficiency is demonstrated.
Abstract: We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core × 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier.

139 citations

Proceedings ArticleDOI
28 Oct 2013
TL;DR: In this paper, the authors demonstrate 12-core fiber bidirectional longhaul transmission with sub-petabit-class capacity (2 × 344 Tb/s) using inter-core crosstalk management and multicarrier nonlinear compensation.
Abstract: We demonstrate 12-core fiber bidirectional long-haul transmission with sub-petabit-class capacity (2 × 344 Tb/s). Inter-core crosstalk management and multicarrier nonlinear compensation enabled the longest distance of 1500 km in SDM transmission with unidirectional capacity over 300 Tb/s.

104 citations

Journal ArticleDOI
TL;DR: Bidirectional transmission over 450 km of newly-developed dual-ring structured 12-core fiber with large effective area and low crosstalk is demonstrated, and 409-Tb/s capacities are achieved for both directions.
Abstract: We demonstrate bidirectional transmission over 450 km of newly-developed dual-ring structured 12-core fiber with large effective area and low crosstalk. Inter-core crosstalk is suppressed by employing propagation-direction interleaving, and 409-Tb/s capacities are achieved for both directions.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations

Journal ArticleDOI
05 Jun 2006
TL;DR: This paper discusses the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlights their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion.
Abstract: Fiber-optic communication systems form the high-capacity transport infrastructure that enables global broadband data services and advanced Internet applications. The desire for higher per-fiber transport capacities and, at the same time, the drive for lower costs per end-to-end transmitted information bit has led to optically routed networks with high spectral efficiencies. Among other enabling technologies, advanced optical modulation formats have become key to the design of modern wavelength division multiplexed (WDM) fiber systems. In this paper, we review optical modulation formats in the broader context of optically routed WDM networks. We discuss the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

772 citations

Journal ArticleDOI
TL;DR: This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk, and presents the prospects for SDM in optical transmission and networking.
Abstract: Space-division multiplexing (SDM) uses multiplicity of space channels to increase capacity for optical communication. It is applicable for optical communication in both free space and guided waves. This paper focuses on SDM for fiber-optic communication using few-mode fibers or multimode fibers, in particular on the critical challenge of mode crosstalk. Multiple-input–multiple-output (MIMO) equalization methods developed for wireless communication can be applied as an electronic method to equalize mode crosstalk. Optical approaches, including differential modal group delay management, strong mode coupling, and multicore fibers, are necessary to bring the computational complexity for MIMO mode crosstalk equalization to practical levels. Progress in passive devices, such as (de)multiplexers, and active devices, such as amplifiers and switches, which are considered straightforward challenges in comparison with mode crosstalk, are reviewed. Finally, we present the prospects for SDM in optical transmission and networking.

621 citations

Journal ArticleDOI
TL;DR: The generation and detection of multigigabit/second intensity- and phase-modulated formats are reviewed to highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, chromatic dispersion, polarization-mode dispersion.
Abstract: Advanced optical modulation formats have become a key ingredient to the design of modern wavelength-division-multiplexed (WDM) optically routed networks. In this paper, we review the generation and detection of multigigabit/second intensity- and phase-modulated formats and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

490 citations