scispace - formally typeset
Search or ask a question
Author

Hiroya Nakao

Bio: Hiroya Nakao is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Limit cycle & Phase (waves). The author has an hindex of 30, co-authored 126 publications receiving 2711 citations. Previous affiliations of Hiroya Nakao include University of Tokyo & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: A general framework now provides the tools for studying so-called Turing patterns in systems organized in complex networks, leading to the spontaneous emergence of periodic spatial patterns.
Abstract: Differences in diffusion constants of activator and inhibitor species can destabilize biological and chemical processes, leading to the spontaneous emergence of periodic spatial patterns. A general framework now provides the tools for studying such so-called Turing patterns in systems organized in complex networks.

308 citations

Journal ArticleDOI
TL;DR: In this paper, the authors briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of nonlinear limit-cycle oscillators exhibiting spontaneous rhythms.
Abstract: Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common ...

197 citations

Journal ArticleDOI
TL;DR: It is demonstrated that in addition to synchronization, clustering, or more generally coherence, always results from arbitrary initial conditions, irrespective of the details of the oscillators.
Abstract: We study synchronization properties of general uncoupled limit-cycle oscillators driven by common and independent Gaussian white noises. Using phase reduction and averaging methods, we analytically derive the stationary distribution of the phase difference between oscillators for weak noise intensity. We demonstrate that in addition to synchronization, clustering, or more generally coherence, always results from arbitrary initial conditions, irrespective of the details of the oscillators.

174 citations

Journal ArticleDOI
TL;DR: A phase-reduction method is formulated for a general class of noisy limit cycle oscillators and it is found that the phase equation is parametrized by the ratio between time scales of the noise correlation and amplitude relaxation of the limit cycle.
Abstract: We formulate a phase-reduction method for a general class of noisy limit cycle oscillators and find that the phase equation is parametrized by the ratio between time scales of the noise correlation and amplitude relaxation of the limit cycle. The equation naturally includes previously proposed and mutually exclusive phase equations as special cases. The validity of the theory is numerically confirmed. Using the method, we reveal how noise and its correlation time affect limit cycle oscillations.

116 citations

Journal ArticleDOI
TL;DR: In this article, the authors briefly review phase reduction theory, which is a simple and powerful method for analyzing the synchronization properties of limit-cycle oscillators exhibiting spontaneous rhythms, including the phase locking of an oscillator to a periodic external forcing and the mutual synchronization of interacting oscillators.
Abstract: Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modeled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analyzing the synchronization properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyze. Classical applications of this theory, i.e., the phase locking of an oscillator to a periodic external forcing and the mutual synchronization of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronization of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.

114 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA).
Abstract: We develop a method for the multifractal characterization of nonstationary time series, which is based on a generalization of the detrended fluctuation analysis (DFA). We relate our multifractal DFA method to the standard partition function-based multifractal formalism, and prove that both approaches are equivalent for stationary signals with compact support. By analyzing several examples we show that the new method can reliably determine the multifractal scaling behavior of time series. By comparing the multifractal DFA results for original series with those for shuffled series we can distinguish multifractality due to long-range correlations from multifractality due to a broad probability density function. We also compare our results with the wavelet transform modulus maxima method, and show that the results are equivalent.

2,967 citations