scispace - formally typeset
Search or ask a question
Author

Hiroyasu Ishikura

Bio: Hiroyasu Ishikura is an academic researcher from Fukuoka University. The author has contributed to research in topics: Medicine & Disseminated intravascular coagulation. The author has an hindex of 26, co-authored 110 publications receiving 2521 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The JAAM DIC scoring system has an acceptable property for the diagnosis of DIC and can be useful for selecting DIC patients for early treatment in a critical care setting.
Abstract: Objectives:To validate scoring algorithm criteria established by the Japanese Association for Acute Medicine (JAAM) for disseminated intravascular coagulation (DIC) and to evaluate its diagnostic property by comparing the two leading scoring systems for DIC, from the Japanese Ministry of Health and

486 citations

Journal ArticleDOI
TL;DR: Presepsin is useful for the diagnosis of sepsis, and it is superior to conventional markers and blood culture.

243 citations

Journal ArticleDOI
TL;DR: This prospective survey demonstrated the natural history of DIC patients diagnosed by the Japanese Association for Acute Medicine DIC diagnostic criteria in a critical care setting and provided further evidence of a progression from the JAAM DIC to the ISTH overt DIC.
Abstract: Objective:To survey the natural history of disseminated intravascular coagulation (DIC) in patients diagnosed according to the Japanese Association for Acute Medicine (JAAM) DIC scoring system in a critical care setting.Design:Prospective, multicenter study during a 4-month period.Setting:General cr

205 citations

Journal ArticleDOI
TL;DR: This research presents a novel probabilistic procedure called “spot-spot analysis” that allows for real-time analysis of the response of the immune system to natural disasters.
Abstract: [This corrects the article DOI: 10.1186/s13054-016-1208-6.].

180 citations

Journal ArticleDOI
TL;DR: PVPI may be a useful quantitative diagnostic tool for ARDS in patients with hypoxemic respiratory failure and radiographic infiltrates and was weakly correlated with intrathoracic blood volume in ALI/ARDS and cardiogenic edema patients.
Abstract: Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional, observational study aimed to clarify the clinical pathophysiological features of ALI/ARDS and establish its quantitative diagnostic criteria. The extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI) were measured using the transpulmonary thermodilution method in 266 patients with PaO2/FiO2 ratio ≤ 300 mmHg and bilateral infiltration on chest radiography, in 23 ICUs of academic tertiary referral hospitals. Pulmonary edema was defined as EVLWI ≥ 10 ml/kg. Three experts retrospectively determined the pathophysiological features of respiratory insufficiency by considering the patients' history, clinical presentation, chest computed tomography and radiography, echocardiography, EVLWI and brain natriuretic peptide level, and the time course of all preceding findings under systemic and respiratory therapy. Patients were divided into the following three categories on the basis of the pathophysiological diagnostic differentiation of respiratory insufficiency: ALI/ARDS, cardiogenic edema, and pleural effusion with atelectasis, which were noted in 207 patients, 26 patients, and 33 patients, respectively. EVLWI was greater in ALI/ARDS and cardiogenic edema patients than in patients with pleural effusion with atelectasis (18.5 ± 6.8, 14.4 ± 4.0, and 8.3 ± 2.1, respectively; P < 0.01). PVPI was higher in ALI/ARDS patients than in cardiogenic edema or pleural effusion with atelectasis patients (3.2 ± 1.4, 2.0 ± 0.8, and 1.6 ± 0.5; P < 0.01). In ALI/ARDS patients, EVLWI increased with increasing pulmonary vascular permeability (r = 0.729, P < 0.01) and was weakly correlated with intrathoracic blood volume (r = 0.236, P < 0.01). EVLWI was weakly correlated with the PaO2/FiO2 ratio in the ALI/ARDS and cardiogenic edema patients. A PVPI value of 2.6 to 2.85 provided a definitive diagnosis of ALI/ARDS (specificity, 0.90 to 0.95), and a value < 1.7 ruled out an ALI/ARDS diagnosis (specificity, 0.95). PVPI may be a useful quantitative diagnostic tool for ARDS in patients with hypoxemic respiratory failure and radiographic infiltrates. UMIN-CTR ID UMIN000003627

129 citations


Cited by
More filters
Journal ArticleDOI
Rui Wang1
TL;DR: The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrate, vertebrates, and finally to mammals, but over the centuries it had only been known for its toxicity and environmental hazard.
Abstract: The important life-supporting role of hydrogen sulfide (H2S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H2S had only been known for its toxicity and environmental hazard. Physiological importance of H2S has been appreciated for about a decade. It started by the discovery of endogenous H2S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H2S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H2S. The physiological functions of H2S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H2S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes...

1,560 citations

Journal ArticleDOI
TL;DR: The International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support (ALS) Task Force performed detailed systematic reviews based on the recommendations of the Institute of Medicine of the National Academies and using the methodological approach proposed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Working Group.
Abstract: The International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support (ALS) Task Force performed detailed systematic reviews based on the recommendations of the Institute of Medicine of the National Academies1 and using the methodological approach proposed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) Working Group.2 Questions to be addressed (using the PICO [population, intervention, comparator, outcome] format)3 were prioritized by ALS Task Force members (by voting). Prioritization criteria included awareness of significant new data and new controversies or questions about practice. Questions about topics no longer relevant to contemporary practice or where little new research has occurred were given lower priority. The ALS Task Force prioritized 42 PICO questions for review. With the assistance of information specialists, a detailed search for relevant articles was performed in each of 3 online databases (PubMed, Embase, and the Cochrane Library). By using detailed inclusion and exclusion criteria, articles were screened for further evaluation. The reviewers for each question created a reconciled risk of bias assessment for each of the included studies, using state-of-the-art tools: Cochrane for randomized controlled trials (RCTs),4 Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 for studies of diagnostic accuracy,5 and GRADE for observational studies that inform both therapy and prognosis questions.6 GRADE evidence profile tables7 were then created to facilitate an evaluation of the evidence in support of each of the critical and important outcomes. The quality of the evidence (or confidence in the estimate of the effect) was categorized as high, moderate, low, or very low,8 based on the study methodologies and the 5 core GRADE domains of risk of bias, inconsistency, indirectness, imprecision, and other considerations (including publication bias).9 These evidence profile tables were then used to create a …

1,372 citations

Journal ArticleDOI
TL;DR: The guideline now recommends that patients be transferred directly to an appropriate trauma treatment centre and encourages use of a restricted volume replacement strategy during initial resuscitation, and may also serve as a basis for local implementation.
Abstract: Severe trauma continues to represent a global public health issue and mortality and morbidity in trauma patients remains substantial. A number of initiatives have aimed to provide guidance on the management of trauma patients. This document focuses on the management of major bleeding and coagulopathy following trauma and encourages adaptation of the guiding principles to each local situation and implementation within each institution. The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004 and included representatives of six relevant European professional societies. The group used a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were reconsidered and revised based on new scientific evidence and observed shifts in clinical practice; new recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. This guideline represents the fourth edition of a document first published in 2007 and updated in 2010 and 2013. The guideline now recommends that patients be transferred directly to an appropriate trauma treatment centre and encourages use of a restricted volume replacement strategy during initial resuscitation. Best-practice use of blood products during further resuscitation continues to evolve and should be guided by a goal-directed strategy. The identification and management of patients pre-treated with anticoagulant agents continues to pose a real challenge, despite accumulating experience and awareness. The present guideline should be viewed as an educational aid to improve and standardise the care of the bleeding trauma patients across Europe and beyond. This document may also serve as a basis for local implementation. Furthermore, local quality and safety management systems need to be established to specifically assess key measures of bleeding control and outcome. A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. The implementation of locally adapted treatment algorithms should strive to achieve measureable improvements in patient outcome.

1,247 citations

Journal ArticleDOI
TL;DR: The recommendations in this 2015 American Heart Association (AHA) Guidelines Update for Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care (ECC) are based on an extensive evidence review process that was begun by the International Liaison Committee on Resuscitate (ILCOR) after the publication of the ILCOR 2010 International Consensus on Cardiac Arrest Science With Treatment Recommendations.
Abstract: Basic life support (BLS), advanced cardiovascular life support (ACLS), and post–cardiac arrest care are labels of convenience that each describe a set of skills and knowledge that are applied sequentially during the treatment of patients who have a cardiac arrest. There is overlap as each stage of care progresses to the next, but generally ACLS comprises the level of care between BLS and post–cardiac arrest care. ACLS training is recommended for advanced providers of both prehospital and in-hospital medical care. In the past, much of the data regarding resuscitation was gathered from out-of-hospital arrests, but in recent years, data have also been collected from in-hospital arrests, allowing for a comparison of cardiac arrest and resuscitation in these 2 settings. While there are many similarities, there are also some differences between in- and out-of-hospital cardiac arrest etiology, which may lead to changes in recommended resuscitation treatment or in sequencing of care. The consideration of steroid administration for in-hospital cardiac arrest (IHCA) versus out-of-hospital cardiac arrest (OHCA) is one such example discussed in this Part. The recommendations in this 2015 American Heart Association (AHA) Guidelines Update for Cardiopulmonary Resuscitation (CPR) and Emergency Cardiovascular Care (ECC) are based on an extensive evidence review process that was begun by the International Liaison Committee on Resuscitation (ILCOR) after the publication of the ILCOR 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations 1 and was completed in February 2015.2 In this in-depth evidence review process, the ILCOR task forces examined topics and then generated prioritized lists of questions for systematic review. Questions were first formulated in PICO (population, intervention, comparator, outcome) format,3 and then a search strategy and inclusion and exclusion criteria were defined and a search for relevant articles was performed. The evidence was evaluated by using …

1,040 citations