scispace - formally typeset
Search or ask a question
Author

Hiroyuki Asanuma

Bio: Hiroyuki Asanuma is an academic researcher from Nagoya University. The author has contributed to research in topics: Azobenzene & Nucleic acid. The author has an hindex of 45, co-authored 244 publications receiving 6063 citations. Previous affiliations of Hiroyuki Asanuma include Sysmex Corporation & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: The introduction of azobenzenes into the T7 promoter at specific positions also efficiently and reversibly photo-regulates transcription by T7-RNA polymerase and can be repeated many times without causing damage to the DNA or the azobenzene moiety.
Abstract: A phosphoramidite monomer bearing an azobenzene is synthesized from D-threoninol. Using this monomer, azobenzene moieties can be introduced into oligodeoxyribonucleotide (DNA) at any position on a conventional DNA synthesizer. With this azobenzene-tethered DNA, formation and dissociation of a DNA duplex can be reversibly photo-regulated by cis-trans isomerization of the azobenzene. When the azobenzene takes a trans-form, a stable duplex is formed. After isomerization of the trans-azobenzene to its cis-form by UV-light irradiation (300 nm 400 nm). The introduction of azobenzenes into the T7 promoter at specific positions also efficiently and reversibly photo-regulates transcription by T7-RNA polymerase. The reversible regulation can be repeated many times without causing damage to the DNA or the azobenzene moiety. These procedures take approximately 10 d to complete.

270 citations

Journal ArticleDOI
TL;DR: The duplex-forming activity of an oligonucleotide has been photoregulated by making use of the isomerization of an azobenzene moiety in the side chain.
Abstract: The duplex-forming activity of an oligonucleotide has been photoregulated by making use of the isomerization of an azobenzene moiety in the side chain. When the azobenzene moiety is isomerized from the trans form to the cis form upon photoirradiation, the melting temperature of the duplex between the oligonucleotide and its complementary counterpart is significantly lowered, and the duplex is largely dissociated into two single-stranded oligonucleotides (shown schematically).

259 citations

Journal ArticleDOI
TL;DR: The basis of the method is installation of an azobenzene into a DNA sequence through a d-threoninol scaffold, and the methods have allowed us to design various DNA machines that demonstrate sophisticated motion in response to lights of different wavelengths without a drop in photoregulatory efficiency.
Abstract: ConspectusDNA is regarded as an excellent nanomaterial due to its supramolecular property of duplex formation through A–T and G–C complementary pairs. By simply designing sequences, we can create any desired 2D or 3D nanoarchitecture with DNA. Based on these nanoarchitectures, motional DNA-based nanomachines have also been developed. Most of the nanomachines require molecular fuels to drive them. Typically, a toehold exchange reaction is applied with a complementary DNA strand as a fuel. However, repetitive operation of the machines accumulates waste DNA duplexes in the solution that gradually deteriorate the motional efficiency. Hence, we are facing an “environmental problem” even in the nanoworld. One of the direct solutions to this problem is to use clean energy, such as light. Since light does not contaminate the reaction system, a DNA nanomachine run by a photon engine can overcome the drawback of waste that is a problem with molecular-fueled engines.There are several photoresponsive molecules that c...

183 citations

Journal ArticleDOI
TL;DR: A drop in melting point is induced by the UV-photolytic trans→cis isomerization of the duplex formed between an oligonucleotide bearing two D-threoninol-tethered azobenzene moieties in the side chain and its complementary counterpart.
Abstract: A drop in melting point of 21.5°C is induced by the UV-photolytic trans→cis isomerization of the duplex formed between an oligonucleotide bearing two D-threoninol-tethered azobenzene moieties in the side chain and its complementary counterpart. On irradiation with visible light, the dissociated single-stranded oligonucleotides regenerate the duplex.

139 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2016
TL;DR: The principles of fluorescence spectroscopy is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading principles of fluorescence spectroscopy. As you may know, people have look hundreds times for their favorite novels like this principles of fluorescence spectroscopy, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they cope with some harmful bugs inside their desktop computer. principles of fluorescence spectroscopy is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the principles of fluorescence spectroscopy is universally compatible with any devices to read.

2,960 citations

Journal ArticleDOI
10 Aug 2000-Nature
TL;DR: The construction of a DNA machine in which the DNA is used not only as a structural material, but also as ‘fuel’; each cycle produces a duplex DNA waste product.
Abstract: Molecular recognition between complementary strands of DNA allows construction on a nanometre length scale. For example, DNA tags may be used to organize the assembly of colloidal particles, and DNA templates can direct the growth of semiconductor nanocrystals and metal wires. As a structural material in its own right, DNA can be used to make ordered static arrays of tiles, linked rings and polyhedra. The construction of active devices is also possible--for example, a nanomechanical switch, whose conformation is changed by inducing a transition in the chirality of the DNA double helix. Melting of chemically modified DNA has been induced by optical absorption, and conformational changes caused by the binding of oligonucleotides or other small groups have been shown to change the enzymatic activity of ribozymes. Here we report the construction of a DNA machine in which the DNA is used not only as a structural material, but also as 'fuel'. The machine, made from three strands of DNA, has the form of a pair of tweezers. It may be closed and opened by addition of auxiliary strands of 'fuel' DNA; each cycle produces a duplex DNA waste product.

2,148 citations

Journal ArticleDOI
TL;DR: The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives.
Abstract: The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives. After analyzing a few important examples of natural molecular machines, the most significant developments in the field of artificial molecular machines are highlighted. The systems reviewed include 1) chemical rotors, 2) photochemically and electrochemically induced molecular (conformational) rearrangements, and 3) chemically, photochemically, and electrochemically controllable (co-conformational) motions in interlocked molecules (catenanes and rotaxanes), as well as in coordination and supramolecular complexes, including pseudorotaxanes. Artificial molecular machines based on biomolecules and interfacing artificial molecular machines with surfaces and solid supports are amongst some of the cutting-edge topics featured in this review. The extension of the concept of a machine to the molecular level is of interest not only for the sake of basic research, but also for the growth of nanoscience and the subsequent development of nanotechnology.

2,099 citations

Journal ArticleDOI
TL;DR: This critical review details the studies completed to date on the 3 main classes of azobenzene derivatives and explains the mechanism behind the isomerization mechanism.
Abstract: Azobenzene undergoes trans → cisisomerization when irradiated with light tuned to an appropriate wavelength. The reverse cis →transisomerization can be driven by light or occurs thermally in the dark. Azobenzene's photochromatic properties make it an ideal component of numerous molecular devices and functional materials. Despite the abundance of application-driven research, azobenzene photochemistry and the isomerization mechanism remain topics of investigation. Additional substituents on the azobenzene ring system change the spectroscopic properties and isomerization mechanism. This critical review details the studies completed to date on the 3 main classes of azobenzene derivatives. Understanding the differences in photochemistry, which originate from substitution, is imperative in exploiting azobenzene in the desired applications.

2,062 citations