scispace - formally typeset
Search or ask a question
Author

Hiroyuki Sangawa

Bio: Hiroyuki Sangawa is an academic researcher from Osaka University. The author has contributed to research in topics: Clathrate hydrate & Aqueous solution. The author has an hindex of 2, co-authored 2 publications receiving 398 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the isothermal phase equilibrium relations of pressure and compositions in the gas, liquid, and hydrate phases for the CO2-CH4 mixed hydrate system at 280 K were obtained in company with the apparent Henry constants for the methane-water system and the three-phase coexisting lines.
Abstract: Natural-gas hydrate fields having a large amount of methane deposits have become the object of public attention as a potential natural-gas resource. An idea of methane exploitation in linkage with CO2 isolation has been presented elsewhere. In the present study, the isothermal phase equilibrium relations of pressure and compositions in the gas, liquid, and hydrate phases for the CO2-CH4 mixed hydrate system at 280 K are obtained in company with the apparent Henry constants for the methane-water system and the three-phase coexisting lines for the methane hydrate system. The averaged distribution coefficient of methane between gas phase and hydrate phase is about 2.5, that is, methane in the hydrate phase is replaced selectively by CO2. This is the first experimental evidence for the possibility of methane exploitation combined with CO2 isolation.

461 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined what would happen in a crystal recrystallized in the aqueous solution which was previously exposed in a magnetic field, and they investigated what happens if two annealing solutions, which were previously exposed by a magnetic force, are reacted by mixing.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review various studies on resource potential of natural gas hydrate, the current research progress in laboratory settings, and several recent field trials, and discuss possible limitation in each production method and the challenges to be addressed for large scale production.

1,236 citations

BookDOI
01 Oct 2012
TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
Abstract: The Global Energy Assessment (GEA) brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options. It has been peer-reviewed anonymously by an additional 200 international experts. The GEA assesses the major global challenges for sustainable development and their linkages to energy; the technologies and resources available for providing energy services; future energy systems that address the major challenges; and the policies and other measures that are needed to realize transformational change toward sustainable energy futures. The GEA goes beyond existing studies on energy issues by presenting a comprehensive and integrated analysis of energy chalenges, opportunities and strategies, for developing, industrialized and emerging economies. This volume is a invaluable resource for energy specialists and technologists in all sectors (academia, industry and government) as well as policymakers, development economists and practitioners in international organizations and national governments.

812 citations

Journal ArticleDOI
Xiao-Sen Li1, Chun-Gang Xu1, Yu Zhang1, Xu Ke Ruan1, Gang Li1, Yi Wang1 
TL;DR: In this paper, the authors comprehensively review the relevant studies of natural gas hydrates and propose their comments, discuss the limitations and challenges, raise some questions and put forward some suggestions from their points of view.

474 citations

Journal ArticleDOI
TL;DR: In this article, a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology is presented.

472 citations

Journal ArticleDOI
TL;DR: This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade.
Abstract: Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring hydrates within the Earth, and for developing green technologies This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade Challenges, limitations, and future perspectives of each field are briefly discussed The overall objective of this review is to provide readers with an extensive overview of gas hydrates that we hope will stimulate further work on this riveting field

349 citations