scispace - formally typeset
Search or ask a question
Author

Hisako Hirayama

Bio: Hisako Hirayama is an academic researcher from Japan Agency for Marine-Earth Science and Technology. The author has contributed to research in topics: Epsilonproteobacteria & Hydrothermal circulation. The author has an hindex of 33, co-authored 41 publications receiving 3618 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values previously reported for other hydrogenotrophic methanogens, but under high hydrostatic pressures, the atom fractionation effect became much smaller, and the kinetic isotope effect was one of the smallest effects ever reported.
Abstract: We have developed a technique for cultivation of chemolithoautotrophs under high hydrostatic pressures that is successfully applicable to various types of deep-sea chemolithoautotrophs, including methanogens. It is based on a glass-syringe-sealing liquid medium and gas mixture used in conjunction with a butyl rubber piston and a metallic needle stuck into butyl rubber. By using this technique, growth, survival, and methane production of a newly isolated, hyperthermophilic methanogen Methanopyrus kandleri strain 116 are characterized under high temperatures and hydrostatic pressures. Elevated hydrostatic pressures extend the temperature maximum for possible cell proliferation from 116°C at 0.4 MPa to 122°C at 20 MPa, providing the potential for growth even at 122°C under an in situ high pressure. In addition, piezophilic growth significantly affected stable carbon isotope fractionation of methanogenesis from CO2. Under conventional growth conditions, the isotope fractionation of methanogenesis by M. kandleri strain 116 was similar to values (−34‰ to−27‰) previously reported for other hydrogenotrophic methanogens. However, under high hydrostatic pressures, the isotope fractionation effect became much smaller (<−12‰), and the kinetic isotope effect at 122°C and 40 MPa was −9.4‰, which is one of the smallest effects ever reported. This observation will shed light on the sources and production mechanisms of deep-sea methane.

684 citations

Journal ArticleDOI
TL;DR: Geochemical and microbiological evidence suggests that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurfaced microbial communities.
Abstract: Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic micro- bial ecosystem (HyperSLiME) dominated by hyper- thermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geo- chemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and )13.8& PDB, respectively) and the adjacent diver- gent vent site (0.2 mM and )18.5& PDB, respectively), representing potential subsurface microbial methano- genesis, at least in the divergent vent emitting more 13 C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoauto- trophic microbial activity. Both cultivation and culti- vation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney inte- riors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and ferment- ers, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.

300 citations

Journal ArticleDOI
TL;DR: Results provide new insight into the ecophysiological characteristics of the deep-sea hydrothermal vent epsilon-Proteobacteria, which has never been assessed by comparative analysis of the 16S rRNA genes.
Abstract: Epsilon-Proteobacteria is increasingly recognized as an ecologically significant group of bacteria, particularly in deep-sea hydrothermal environments. In this study, we studied the spatial distribution, diversity and physiological characteristics of the epsilon-Proteobacteria in various microbial habitats in the vicinity of a deep-sea hydrothermal vent occurring in the Iheya North field in the Mid-Okinawa Trough, by using culture-dependent and -independent approaches. The habitats studied were inside and outside hydrothermal plume, and annelid polychaete tubes. In addition, we deployed colonization devices near the vent emission. The polychaete tubes harboured physiologically and phylogenetically diverse microbial community. The in situ samplers were predominantly colonized by epsilon-Proteobacteria. Energy metabolism of epsilon-Proteobacteria isolates was highly versatile. Tree topology generated from the metabolic traits was significantly different (P = 0.000) from that of 16S rRNA tree, indicating current 16S rRNA gene-based analyses do not provide sufficient information to infer the physiological characteristics of epsilon-Proteobacteria. Nevertheless, culturability of epsilon-Proteobacteria in various microbial habitats differed among the phylogenetic subgroups. Members of Sulfurimonas were characterized by the robust culturability, and the other phylogenetic subgroups appeared to lose culturability in seawater, probably because of the sensitivity to oxygen. These results provide new insight into the ecophysiological characteristics of the deep-sea hydrothermal vent epsilon-Proteobacteria, which has never been assessed by comparative analysis of the 16S rRNA genes.

243 citations

Journal ArticleDOI
TL;DR: The enzymatic and genetic characteristics described here were consistent with cellular carbon and energy metabolisms and suggest that molecular tools may have great potential for in situ elucidation of the ecophysiological roles of deep-sea Epsilonproteobacteria.
Abstract: The carbon and energy metabolisms of a variety of cultured chemolithoautotrophic Epsilonproteobacteria from deep-sea hydrothermal environments were characterized by both enzymatic and genetic analyses. All the Epsilonproteobacteria tested had all three key reductive tricarboxylic acid (rTCA) cycle enzymatic activities—ATP-dependent citrate lyase, pyruvate:ferredoxin oxidoreductase, and 2-oxoglutarate:ferredoxin oxidoreductase—while they had no ribulose 1,5-bisphosphate carboxylase (RubisCO) activity, the key enzyme in the Calvin-Benson cycle. These results paralleled the successful amplification of the key rTCA cycle genes aclB, porAB, and oorAB and the lack of success at amplifying the form I and II RubisCO genes, cbbL and cbbM. The combination of enzymatic and genetic analyses demonstrates that the Epsilonproteobacteria tested use the rTCA cycle for carbon assimilation. The energy metabolisms of deep-sea Epsilonproteobacteria were also well specified by the enzymatic and genetic characterization: hydrogen-oxidizing strains had evident soluble acceptor:methyl viologen hydrogenase activity and hydrogen uptake hydrogenase genes (hyn operon), while sulfur-oxidizing strains lacked both the enzyme activity and the genes. Although the energy metabolism of reduced sulfur compounds was not genetically analyzed and was not fully clarified, sulfur-oxidizing Epsilonproteobacteria showed enzyme activity of a potential sulfite:acceptor oxidoreductase for a direct oxidation pathway to sulfate but no activity of AMP-dependent adenosine 5′-phosphate sulfate reductase for a indirect oxidation pathway. No activity of thiosulfate-oxidizing enzymes was detected. The enzymatic and genetic characteristics described here were consistent with cellular carbon and energy metabolisms and suggest that molecular tools may have great potential for in situ elucidation of the ecophysiological roles of deep-sea Epsilonproteobacteria.

188 citations

Journal ArticleDOI
TL;DR: The successful cultivation and partial characterization of novel members of ɛ-Proteobacteria, which have long been recognized solely as genetic signatures of small subunit ribosomal RNA genes (rDNA) from a variety of habitats occurring in deep-sea hydrothermal fields, are reported.
Abstract: We report the successful cultivation and partial characterization of novel members of ɛ-Proteobacteria, which have long been recognized solely as genetic signatures of small subunit ribosomal RNA genes (rDNA) from a variety of habitats occurring in deep-sea hydrothermal fields. A newly designed microhabitat designated ‘in situ colonization system’ was used for enrichment. Based on phylogenetic analysis of the rDNA of the isolates, most of these represent the first cultivated members harboring previously uncultivated phylotypes classified into the Uncultivated ɛ-Proteobacteria Groups A, B, F and G, as well as some novel members of Group D. Preliminary characterization of the isolates indicates that all are mesophilic or thermophilic chemolithoautotrophs using H2 or reduced sulfur compounds (elemental sulfur or thiosulfate) as an electron donor and O2, nitrate or elemental sulfur as an electron acceptor. The successful cultivation will enable the subsequent characterization of physiological properties and ecological impacts of a diversity of ɛ-Proteobacteria in the deep-sea hydrothermal environments.

174 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment.
Abstract: The evolution of marine microbes over billions of years predicts that the composition of microbial communities should be much greater than the published estimates of a few thousand distinct kinds of microbes per liter of seawater. By adopting a massively parallel tag sequencing strategy, we show that bacterial communities of deep water masses of the North Atlantic and diffuse flow hydrothermal vents are one to two orders of magnitude more complex than previously reported for any microbial environment. A relatively small number of different populations dominate all samples, but thousands of low-abundance populations account for most of the observed phylogenetic diversity. This "rare biosphere" is very ancient and may represent a nearly inexhaustible source of genomic innovation. Members of the rare biosphere are highly divergent from each other and, at different times in earth's history, may have had a profound impact on shaping planetary processes.

3,535 citations

Journal ArticleDOI
TL;DR: This review summarizes what is known and unknown about AOM on earth and its key catalysts, the anaerobic methanotrophic archaea clades and their bacterial partners.
Abstract: Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron accept...

1,373 citations

Journal ArticleDOI
TL;DR: The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized and used to investigate the dynamics of microbial communities in petroleum-impacted ecosystems.
Abstract: Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times ( 2 S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.

1,346 citations

Journal ArticleDOI
01 Jan 2004-Drugs
TL;DR: Fluoroquinolones and β-lactams of the latest generations are likely to select for overproduction mutants of these pumps and make the bacteria resistant in one step to practically all classes of antibacterial agents.
Abstract: Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.

1,118 citations