scispace - formally typeset
Search or ask a question
Author

Hisao Ishibuchi

Bio: Hisao Ishibuchi is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Fuzzy classification & Fuzzy logic. The author has an hindex of 68, co-authored 702 publications receiving 24103 citations. Previous affiliations of Hisao Ishibuchi include Ashikaga Institute of Technology & Victoria University of Wellington.


Papers
More filters
Journal ArticleDOI
01 Aug 1998
TL;DR: A hybrid algorithm for finding a set of nondominated solutions of a multi objective optimization problem that uses a weighted sum of multiple objectives as a fitness function to randomly specify weight values whenever a pair of parent solutions are selected.
Abstract: We propose a hybrid algorithm for finding a set of nondominated solutions of a multi objective optimization problem. In the proposed algorithm, a local search procedure is applied to each solution (i.e., each individual) generated by genetic operations. Our algorithm uses a weighted sum of multiple objectives as a fitness function. The fitness function is utilized when a pair of parent solutions are selected for generating a new solution by crossover and mutation operations. A local search procedure is applied to the new solution to maximize its fitness value. One characteristic feature of our algorithm is to randomly specify weight values whenever a pair of parent solutions are selected. That is, each selection (i.e., the selection of two parent solutions) is performed by a different weight vector. Another characteristic feature of our algorithm is not to examine all neighborhood solutions of a current solution in the local search procedure. Only a small number of neighborhood solutions are examined to prevent the local search procedure from spending almost all available computation time in our algorithm. High performance of our algorithm is demonstrated by applying it to multi objective flowshop scheduling problems.

973 citations

Proceedings ArticleDOI
01 Jun 2008
TL;DR: This paper demonstrates difficulties in their scalability to many-objective problems through computational experiments, and reviews some approaches proposed in the literature for the scalability improvement of EMO algorithms.
Abstract: Whereas evolutionary multiobjective optimization (EMO) algorithms have successfully been used in a wide range of real-world application tasks, difficulties in their scalability to many-objective problems have also been reported. In this paper, first we demonstrate those difficulties through computational experiments. Then we review some approaches proposed in the literature for the scalability improvement of EMO algorithms. Finally we suggest future research directions in evolutionary many-objective optimization.

845 citations

Journal ArticleDOI
TL;DR: A genetic-algorithm-based method for selecting a small number of significant fuzzy if-then rules to construct a compact fuzzy classification system with high classification power is proposed.
Abstract: This paper proposes a genetic-algorithm-based method for selecting a small number of significant fuzzy if-then rules to construct a compact fuzzy classification system with high classification power. The rule selection problem is formulated as a combinatorial optimization problem with two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy if-then rules. Genetic algorithms are applied to this problem. A set of fuzzy if-then rules is coded into a string and treated as an individual in genetic algorithms. The fitness of each individual is specified by the two objectives in the combinatorial optimization problem. The performance of the proposed method for training data and test data is examined by computer simulations on the iris data of Fisher. >

765 citations

Journal ArticleDOI
TL;DR: This paper shows how the performance of evolutionary multiobjective optimization (EMO) algorithms can be improved by hybridization with local search: the improvement in the convergence speed to the Pareto front and the increase in the computation time per generation.
Abstract: This paper shows how the performance of evolutionary multiobjective optimization (EMO) algorithms can be improved by hybridization with local search. The main positive effect of the hybridization is the improvement in the convergence speed to the Pareto front. On the other hand, the main negative effect is the increase in the computation time per generation. Thus, the number of generations is decreased when the available computation time is limited. As a result, the global search ability of EMO algorithms is not fully utilized. These positive and negative effects are examined by computational experiments on multiobjective permutation flowshop scheduling problems. Results of our computational experiments clearly show the importance of striking a balance between genetic search and local search. In this paper, we first modify our former multiobjective genetic local search (MOGLS) algorithm by choosing only good individuals as initial solutions for local search and assigning an appropriate local search direction to each initial solution. Next, we demonstrate the importance of striking a balance between genetic search and local search through computational experiments. Then we compare the modified MOGLS with recently developed EMO algorithms: the strength Pareto evolutionary algorithm and revised nondominated sorting genetic algorithm. Finally, we demonstrate that a local search can be easily combined with those EMO algorithms for designing multiobjective memetic algorithms.

743 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical programming problem whose objective function has interval coefficients is investigated and the order relations which represent the decision maker's preference between interval profits are defined by the right limit, the left limit, center and width of an interval.

718 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Abstract: Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.

10,296 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface.
Abstract: Evolutionary algorithms (EAs) are often well-suited for optimization problems involving several, often conflicting objectives. Since 1985, various evolutionary approaches to multiobjective optimization have been developed that are capable of searching for multiple solutions concurrently in a single run. However, the few comparative studies of different methods presented up to now remain mostly qualitative and are often restricted to a few approaches. In this paper, four multiobjective EAs are compared quantitatively where an extended 0/1 knapsack problem is taken as a basis. Furthermore, we introduce a new evolutionary approach to multicriteria optimization, the strength Pareto EA (SPEA), that combines several features of previous multiobjective EAs in a unique manner. It is characterized by (a) storing nondominated solutions externally in a second, continuously updated population, (b) evaluating an individual's fitness dependent on the number of external nondominated points that dominate it, (c) preserving population diversity using the Pareto dominance relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated set without destroying its characteristics. The proof-of-principle results obtained on two artificial problems as well as a larger problem, the synthesis of a digital hardware-software multiprocessor system, suggest that SPEA can be very effective in sampling from along the entire Pareto-optimal front and distributing the generated solutions over the tradeoff surface. Moreover, SPEA clearly outperforms the other four multiobjective EAs on the 0/1 knapsack problem.

7,512 citations