scispace - formally typeset
Search or ask a question
Author

Hisao Ito

Bio: Hisao Ito is an academic researcher from Kyoto University. The author has contributed to research in topics: Yeast & Surface roughness. The author has an hindex of 4, co-authored 5 publications receiving 3148 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The transformation efficiency with Cs+ or Li+ was comparable with that of conventional protoplast methods for a plasmid containing ars1, although not for plasmids containing a 2 microns origin replication.
Abstract: When intact cells of Saccharomyces cerevisiae were treated with alkali cations or thiol compounds, the cells gained the ability to take up plasmid DNAs. The transformation efficiencies of yeast cells treated with alkali cations was greatly influenced by both the kind and concentration of cation used. The transformation efficiency also varied depending on the yeast strain. Polyethylene glycol was indispensable for the transformation. The uptake of plasmid DNAs into the yeast cells was found only in the presence of this polymer. Based on these results, the properties of transformation of intact yeast cells treated with alkali cations or thiol compounds were discussed.

3,091 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the Earth's tidal response before and after the Tohoku earthquake to evaluate rock permeability change through hydraulic diffusivity change, assuming a constant elastic modulus.
Abstract: Pore pressure decreased at the Kamioka mine in central Japan after the Tohoku earthquake (M9.0) on 11 March 2011, which can be attributed to a permeability increase. We focus on the Earth's tidal response before and after the earthquake to evaluate rock permeability change through hydraulic diffusivity change. If we assume a constant elastic modulus, hydraulic diffusivity is found to increase from 3.3 to 6.7 m2/s after the Tohoku earthquake. We also analyzed data before and after the 2007 Noto Hanto (M6.9) and 2008 Suruga Bay (M6.5) earthquakes, which yield no significant tidal response changes. We examined the amount of dynamic and static stress changes caused by these earthquakes and show that it is difficult to attribute the permeability enhancement solely to dynamic stress, and static stress change may also affect the permeability enhancement.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a simulation technique to evaluate the macroscopic permeability characteristics by the lattice gas cellular automaton method, considering the microstructure of fracture, namely the fracture surface roughness.
Abstract: With regard to crystalline rock that constitutes deep geology, attempts have been made to explore its hydraulic characteristics by focusing on the network of numerous fractures within. As the hydraulic characteristics of a rock are the accumulation of hydraulic characteristics of each fracture, it is necessary to develop the hydraulic model of a single fracture to predict the large-scale hydraulic behavior. To this end, a simultaneous permeability and shear test device is developed, and shear-flow coupling tests are conducted on specimens having fractures with varied levels of surface roughness in the constant normal stiffness conditions. The results show that the permeability characteristics in the relation between shear displacement and transmissivity change greatly at the point where the stress path reaches the Mohr-Coulomb failure curve. It is also found that there exists a range in which transmissivity is not proportional to the cube of mechanical aperture width, which seems to be because of the occurrence of channeling phenomenon at small mechanical aperture widths. This channeling flow disappears with increasing shear and is transformed into a uniform flow. We develop a simulation technique to evaluate the macroscopic permeability characteristics by the lattice gas cellular automaton method, considering the microstructure of fracture, namely the fracture surface roughness. With this technique, it is shown that the formation of the Hagen-Poiseuille flow is affected by the fracture microstructure under shear, which as a result determines the relationship between the mechanical aperture width and transmissivity.

19 citations


Cited by
More filters
Journal ArticleDOI
10 Feb 2000-Nature
TL;DR: Examination of large-scale yeast two-hybrid screens reveals interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes.
Abstract: Two large-scale yeast two-hybrid screens were undertaken to identify protein-protein interactions between full-length open reading frames predicted from the Saccharomyces cerevisiae genome sequence. In one approach, we constructed a protein array of about 6,000 yeast transformants, with each transformant expressing one of the open reading frames as a fusion to an activation domain. This array was screened by a simple and automated procedure for 192 yeast proteins, with positive responses identified by their positions in the array. In a second approach, we pooled cells expressing one of about 6,000 activation domain fusions to generate a library. We used a high-throughput screening procedure to screen nearly all of the 6,000 predicted yeast proteins, expressed as Gal4 DNA-binding domain fusion proteins, against the library, and characterized positives by sequence analysis. These approaches resulted in the detection of 957 putative interactions involving 1,004 S. cerevisiae proteins. These data reveal interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes. The results of these screens are shown here.

4,877 citations

Journal ArticleDOI
01 Dec 1994-Yeast
TL;DR: A dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA is constructed and tested, and some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10–3–10–4.
Abstract: We have constructed and tested a dominant resistance module, for selection of S. cerevisiae transformants, which entirely consists of heterologous DNA. This kanMX module contains the known kanr open reading-frame of the E. coli transposon Tn903 fused to transcriptional and translational control sequences of the TEF gene of the filamentous fungus Ashbya gossypii. This hybrid module permits efficient selection of transformants resistant against geneticin (G418). We also constructed a lacZMT reporter module in which the open reading-frame of the E. coli lacZ gene (lacking the first 9 codons) is fused at its 3' end to the S. cerevisiae ADH1 terminator. KanMX and the lacZMT module, or both modules together, were cloned in the center of a new multiple cloning sequence comprising 18 unique restriction sites flanked by Not I sites. Using the double module for constructions of in-frame substitutions of genes, only one transformation experiment is necessary to test the activity of the promotor and to search for phenotypes due to inactivation of this gene. To allow for repeated use of the G418 selection some kanMX modules are flanked by 470 bp direct repeats, promoting in vivo excision with frequencies of 10(-3)-10(-4). The 1.4 kb kanMX module was also shown to be very useful for PCR based gene disruptions. In an experiment in which a gene disruption was done with DNA molecules carrying PCR-added terminal sequences of only 35 bases homology to each target site, all twelve tested geneticin-resistant colonies carried the correctly integrated kanMX module.

2,727 citations

Journal ArticleDOI
TL;DR: A high-efficiency version of the lithium acetate/single-stranded carrier DNA/PEG method of transformation of Saccharomyces cerevisiae is described, which gives the highest efficiency and yield of transformants.
Abstract: Here we describe a high-efficiency version of the lithium acetate/single-stranded carrier DNA/PEG method of transformation of Saccharomyces cerevisiae. This method currently gives the highest efficiency and yield of transformants, although a faster protocol is available for small number of transformations. The procedure takes up to 1.5 h, depending on the length of heat shock, once the yeast culture has been grown. This method is useful for most transformation requirements.

2,039 citations

Journal ArticleDOI
01 Jul 2001-Methods
TL;DR: The TAP method is developed as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level, and is a very useful procedure for protein purification and proteome exploration.

1,906 citations

Journal ArticleDOI
02 Jan 1992-Gene
TL;DR: A set of four yeast shuttle vectors that incorporate sequences from the Saccharomyces cerevisiae 2 mu endogenous plasmid has been constructed, providing high-copy-number counterparts to the current pRS vectors.

1,674 citations