scispace - formally typeset
Search or ask a question
Author

Hisashi Murakami

Bio: Hisashi Murakami is an academic researcher from Tokyo University of Agriculture and Technology. The author has contributed to research in topics: Epitaxy & Sapphire. The author has an hindex of 24, co-authored 141 publications receiving 3258 citations. Previous affiliations of Hisashi Murakami include Dr Emilio B Espinosa Sr Memorial State College of Agriculture and Technology & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices is presented, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy.
Abstract: This is a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices. Ga2O3 possesses excellent material properties, in particular for power device applications. It is also attractive from an industrial viewpoint since large-size, high-quality wafers can be manufactured from a single-crystal bulk synthesized by melt–growth methods. These two features have drawn much attention to Ga2O3 as a new wide bandgap semiconductor following SiC and GaN. In this review, we describe the recent progress in the research and development on fundamental technologies of Ga2O3 devices, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy, as well as device processing and characterization of metal–semiconductor field-effect transistors, metal–oxide–semiconductor field-effect transistors and Schottky barrier diodes.

742 citations

Journal ArticleDOI
TL;DR: In this paper, field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n−-Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-Doped n+-Ga 2O3 (001) substrate.
Abstract: Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n−-Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ·cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current–voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

386 citations

Journal ArticleDOI
TL;DR: In this article, high-purity β-Ga2O3 layers of high crystalline quality were grown homoepitaxially by halide vapor phase epitaxy (HVPE) using gaseous GaCl and O2 on (001) and (002) substrates prepared by edge defined film-fed growth.
Abstract: Thick high-purity β-Ga2O3 layers of high crystalline quality were grown homoepitaxially by halide vapor phase epitaxy (HVPE) using gaseous GaCl and O2 on (001) β-Ga2O3 substrates prepared by edge-defined film-fed growth. The surface morphology and structural quality of the grown layer improved with increasing growth temperature. X-ray diffraction ω-rocking curves for the (002) and (400) reflections for the layer grown at 1000 °C had small full widths at half maximum. Secondary ion mass spectrometry and electrical characteristics revealed that the growth of high-purity β-Ga2O3 layers with low effective donor concentration (Nd − Na < 1013 cm−3) is possible by HVPE.

277 citations

Journal ArticleDOI
TL;DR: In this paper, the temperature-dependent electrical properties of Pt/Ga2O3 Schottky barrier diodes (SBDs) fabricated on n−-Ga 2O3 drift layers grown on single-crystal n+-G 2O 3 (001) substrates by halide vapor phase epitaxy were investigated.
Abstract: We investigated the temperature-dependent electrical properties of Pt/Ga2O3 Schottky barrier diodes (SBDs) fabricated on n–-Ga2O3 drift layers grown on single-crystal n+-Ga2O3 (001) substrates by halide vapor phase epitaxy. In an operating temperature range from 21 °C to 200 °C, the Pt/Ga2O3 (001) Schottky contact exhibited a zero-bias barrier height of 1.09–1.15 eV with a constant near-unity ideality factor. The current–voltage characteristics of the SBDs were well-modeled by thermionic emission in the forward regime and thermionic field emission in the reverse regime over the entire temperature range.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
TL;DR: In this paper, the structural, mechanical, thermal, and chemical properties of substrates used for gallium nitride (GaN) epitaxy are compiled, and the properties of GaN films deposited on these substrates are reviewed.
Abstract: In this review, the structural, mechanical, thermal, and chemical properties of substrates used for gallium nitride (GaN) epitaxy are compiled, and the properties of GaN films deposited on these substrates are reviewed. Among semiconductors, GaN is unique; most of its applications uses thin GaN films deposited on foreign substrates (materials other than GaN); that is, heteroepitaxial thin films. As a consequence of heteroepitaxy, the quality of the GaN films is very dependent on the properties of the substrate—both the inherent properties such as lattice constants and thermal expansion coefficients, and process induced properties such as surface roughness, step height and terrace width, and wetting behavior. The consequences of heteroepitaxy are discussed, including the crystallographic orientation and polarity, surface morphology, and inherent and thermally induced stress in the GaN films. Defects such as threading dislocations, inversion domains, and the unintentional incorporation of impurities into the epitaxial GaN layer resulting from heteroepitaxy are presented along with their effect on device processing and performance. A summary of the structure and lattice constants for many semiconductors, metals, metal nitrides, and oxides used or considered for GaN epitaxy is presented. The properties, synthesis, advantages and disadvantages of the six most commonly employed substrates (sapphire, 6H-SiC, Si, GaAs, LiGaO 2 , and AlN) are presented. Useful substrate properties such as lattice constants, defect densities, elastic moduli, thermal expansion coefficients, thermal conductivities, etching characteristics, and reactivities under deposition conditions are presented. Efforts to reduce the defect densities and to optimize the electrical and optical properties of the GaN epitaxial film by substrate etching, nitridation, and slight misorientation from the (0 0 0 1) crystal plane are reviewed. The requirements, the obstacles, and the results to date to produce zincblende GaN on 3C-SiC/Si(0 0 1) and GaAs are discussed. Tables summarizing measures of the GaN quality such as XRD rocking curve FWHM, photoluminescence peak position and FWHM, and electron mobilities for GaN epitaxial layers produced by MOCVD, MBE, and HVPE for each substrate are given. The initial results using GaN substrates, prepared as bulk crystals and as free-standing epitaxial films, are reviewed. Finally, the promise and the directions of research on new potential substrates, such as compliant and porous substrates are described.

810 citations

Journal ArticleDOI
TL;DR: The UWBG semiconductor materials, such as high Al‐content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near‐term possibility.
Abstract: J. Y. Tsao,* S. Chowdhury, M. A. Hollis,* D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar,* S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons

785 citations

Journal ArticleDOI
TL;DR: In this article, a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices is presented, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy.
Abstract: This is a review article on the current status and future prospects of the research and development on gallium oxide (Ga2O3) power devices. Ga2O3 possesses excellent material properties, in particular for power device applications. It is also attractive from an industrial viewpoint since large-size, high-quality wafers can be manufactured from a single-crystal bulk synthesized by melt–growth methods. These two features have drawn much attention to Ga2O3 as a new wide bandgap semiconductor following SiC and GaN. In this review, we describe the recent progress in the research and development on fundamental technologies of Ga2O3 devices, covering single-crystal bulk and wafer production, homoepitaxial thin film growth by molecular beam epitaxy and halide vapor phase epitaxy, as well as device processing and characterization of metal–semiconductor field-effect transistors, metal–oxide–semiconductor field-effect transistors and Schottky barrier diodes.

742 citations

Journal ArticleDOI
TL;DR: In this article, an etch pit observation revealed that the dislocation density was on the order of 103 cm−3 and the effective donor concentration (N d − N a) was governed by the Si concentration.
Abstract: β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process and the floating zone process. Semiconductor substrates containing no twin boundaries with sizes up to 4 in. in diameter were fabricated. It was found that Si was the main residual impurity in the EFG-grown crystals and that the effective donor concentration (N d − N a) of unintentionally doped crystals was governed by the Si concentration. Intentional n-type doping was shown to be possible. An etch pit observation revealed that the dislocation density was on the order of 103 cm−3. N d − N a for the samples annealed in nitrogen ambient was almost the same as the Si concentration, while for the samples annealed in oxygen ambient, it was around 1 × 1017 cm−3 and independent of the Si concentration.

634 citations