scispace - formally typeset
Search or ask a question
Author

Hisashi Shichijo

Bio: Hisashi Shichijo is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: CMOS & Transistor. The author has an hindex of 34, co-authored 167 publications receiving 4699 citations. Previous affiliations of Hisashi Shichijo include University of Illinois at Urbana–Champaign & Texas Instruments.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors performed a Monte Carlo simulation of high-field transport in GaAs including a realistic band structure to study the band-structure dependence of electron transport and impact ionization.
Abstract: We have performed a Monte Carlo simulation of high-field transport in GaAs including a realistic band structure to study the band-structure dependence of electron transport and impact ionization. The band structure has been calculated using the empirical pseudopotential method. Unlike previous theories of impact ionization, our method is capable of calculating various parameters, such as mean free path, from first principles. The calculated electron mean free path, drift velocity, and impact ionization rate are in reasonable agreement with the experimental data in spite of several simplifications of the model. Within statistical uncertainty we do not observe any orientation dependence of the ionization rate in contradiction to the interpretation of recently reported experimental results. We also find that the contribution of ballistic electrons to impact ionization is negligibly small. Based on the results of the calculation, a general discussion of impact ionization is given.

280 citations

Journal ArticleDOI
TL;DR: In this article, a new mechanism is proposed to obtain negative differential resistance in layered heterostructures for conduction parallel to the interface, based on hot-electron thermionic emission from high mobility GaAs into low mobility AlxGa1−xAs.
Abstract: A new mechanism is proposed to obtain negative differential resistance in layered heterostructures for conduction parallel to the interface. The mechanism is based on hot‐electron thermionic emission from high‐mobility GaAs into low‐mobility AlxGa1−xAs. Preliminary calculations indicate that high peak‐to‐valley ratios can be achieved. The transfer speed is estimated to be of the order of 10−11 s. We further show that the concept of hot‐electron thermionic emission can be applicable to a variety of devices.

276 citations

Journal ArticleDOI
TL;DR: The anomalous leakage current I L in LPCVD polysilicon MOSFETs is attributed to field emission via grain-boundary traps in the (front) surface depletion region at the drain, and an analytic model that describes the strong dependences of I L on the gate and drain voltages is developed.
Abstract: The anomalous leakage current I L in LPCVD polysilicon MOSFET's is attributed to field emission via grain-boundary traps in the (front) surface depletion region at the drain, and an analytic model that describes the strong dependences of I L on the gate and drain voltages is developed. The model predictions are consistent with measured current-voltage characteristics. Physical insight afforded by the model implies device design modifications to control and reduce I L , and indicates when the back-surface leakage component is significant.

275 citations

Journal ArticleDOI
TL;DR: In this paper, a design methodology was developed that yields devices which have low threshold voltage, high drive current, low leakage current, tight parameteric control, and reduced topology, while requiring no nonstandard materials, processes, and tools.
Abstract: Building on nearly two decades of reported results for MOSFET's fabricated in small-grain polycrystalline silicon, a design methodology is developed that yields devices which have low threshold voltage, high drive current, low leakage current, tight parameteric control, and reduced topology, while requiring no nonstandard materials, processes, and tools. Design criteria and device performance are discussed, grain boundary characterization techniques are described, technological issues pertinent to VLSI implementation are investigated, and long-term device reliability is studied. The potential applications of the polysilicon MOSFET's in high-density dRAM and sRAM are explored. The successful implementation of an experimental stacked CMOS 64K static RAM proves the utility of these devices for three-dimensional integration in a VLSI environment.

231 citations

Journal ArticleDOI
TL;DR: In this article, post growth thermal annealing has been used to reduce the defect density of GaAs layers grown on Si substrates by molecular beam epitaxy, and transmission electron microscopy indicates a 100× reduction of the true defect density.
Abstract: Post growth thermal annealing has been used to reduce the defect density of GaAs layers grown on Si substrates by molecular beam epitaxy. Transmission electron microscopy indicates a 100× reduction of the true defect density. Twins and stacking faults were eliminated entirely. Most misfit dislocations were confined within the first ∼150 A GaAs layer and formed a regular and narrow network along the Si/GaAs interface. Similar results were obtained from an ion implanted and annealed specimen.

226 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provide numerical and graphical information about many physical and electronic properties of GaAs that are useful to those engaged in experimental research and development on this material, including properties of the material itself, and the host of effects associated with the presence of specific impurities and defects is excluded from coverage.
Abstract: This review provides numerical and graphical information about many (but by no means all) of the physical and electronic properties of GaAs that are useful to those engaged in experimental research and development on this material. The emphasis is on properties of GaAs itself, and the host of effects associated with the presence of specific impurities and defects is excluded from coverage. The geometry of the sphalerite lattice and of the first Brillouin zone of reciprocal space are used to pave the way for material concerning elastic moduli, speeds of sound, and phonon dispersion curves. A section on thermal properties includes material on the phase diagram and liquidus curve, thermal expansion coefficient as a function of temperature, specific heat and equivalent Debye temperature behavior, and thermal conduction. The discussion of optical properties focusses on dispersion of the dielectric constant from low frequencies [κ0(300)=12.85] through the reststrahlen range to the intrinsic edge, and on the ass...

2,115 citations

Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: A comprehensive treatment of the physics of such interfaces at the contact region is presented and recent progress towards realizing optimal contacts for two-dimensional materials is discussed.
Abstract: The performance of electronic and optoelectronic devices based on two-dimensional layered crystals, including graphene, semiconductors of the transition metal dichalcogenide family such as molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), as well as other emerging two-dimensional semiconductors such as atomically thin black phosphorus, is significantly affected by the electrical contacts that connect these materials with external circuitry. Here, we present a comprehensive treatment of the physics of such interfaces at the contact region and discuss recent progress towards realizing optimal contacts for two-dimensional materials. We also discuss the requirements that must be fulfilled to realize efficient spin injection in transition metal dichalcogenides.

1,293 citations

Journal ArticleDOI
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as discussed by the authors provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

1,068 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations