scispace - formally typeset
Search or ask a question
Author

Ho Bun Chan

Other affiliations: Alcatel-Lucent, Bell Labs, University of Florida  ...read more
Bio: Ho Bun Chan is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Casimir effect & Resonator. The author has an hindex of 25, co-authored 88 publications receiving 3272 citations. Previous affiliations of Ho Bun Chan include Alcatel-Lucent & Bell Labs.


Papers
More filters
Journal ArticleDOI
09 Mar 2001-Science
TL;DR: This work demonstrates the Casimir effect in microelectromechanical systems using a micromachined torsional device and shows that quantum electrodynamical effects play a significant role when the separation between components is in the nanometer range.
Abstract: The Casimir force is the attraction between uncharged metallic surfaces as a result of quantum mechanical vacuum fluctuations of the electromagnetic field. We demonstrate the Casimir effect in microelectromechanical systems using a micromachined torsional device. Attraction between a polysilicon plate and a spherical metallic surface results in a torque that rotates the plate about two thin torsional rods. The dependence of the rotation angle on the separation between the surfaces is in agreement with calculations of the Casimir force. Our results show that quantum electrodynamical effects play a significant role in such microelectromechanical systems when the separation between components is in the nanometer range.

650 citations

Journal ArticleDOI
TL;DR: The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point fluctuations of the electromagnetic field as discussed by the authors, which has a profound influence on the oscillatory behavior of microstructures when surfaces are in close proximity.
Abstract: The Casimir force between uncharged metallic surfaces originates from quantum-mechanical zero-point fluctuations of the electromagnetic field. We demonstrate that this quantum electrodynamical effect has a profound influence on the oscillatory behavior of microstructures when surfaces are in close proximity $(\ensuremath{\le}100\mathrm{nm})$. Frequency shifts, hysteretic behavior, and bistability caused by the Casimir force are observed in the frequency response of a periodically driven micromachined torsional oscillator.

355 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss recent developments on quantum electrodynamical (QED) phenomena, such as the Casimir effect, and their use in nanomechanics and nanotechnology in general.
Abstract: This paper discusses recent developments on quantum electrodynamical (QED) phenomena, such as the Casimir effect, and their use in nanomechanics and nanotechnology in general. Casimir forces and torques arise from quantum fluctuations of vacuum or, more generally, from the zero-point energy of materials and their dependence on the boundary conditions of the electromagnetic fields. Because the latter can be tailored, this raises the interesting possibility of designing QED forces for specific applications. After a concise review of the field in an historical perspective, high precision measurements of the Casimir force using microelectromechanical systems (MEMS) technology and applications of the latter to nonlinear oscillators are presented, along with a discussion of its use in nanoscale position sensors. Then, experiments that have demonstrated the role of the skin-depth effect in reducing the Casimir force are presented. The dielectric response of materials enters in a nonintuitive way in the modification of the Casimir-Lifshitz force between dielectrics through the dielectric function at imaginary frequencies epsiv(ixi). The latter is illustrated in a dramatic way by experiments on materials that can be switched between a reflective and a transparent state (hydrogen switchable mirrors). Repulsive Casimir forces between solids separated by a fluid with epsiv(ixi) intermediate between those of the solids over a large frequency range is discussed, including ongoing experiments aimed at its observation. Such repulsive forces can be used to achieve quantum floatation in a virtually frictionless environment, a phenomenon that could be exploited in innovative applications to nanomechanics. The last part of the paper deals with the elusive QED torque between birefringent materials and efforts to observe it. We conclude by highlighting future important directions

226 citations

Journal ArticleDOI
TL;DR: In this article, a microelectromechanical system-based beam steering optical crossconnect switch core with port count exceeding 1100 was presented, featuring mean fiber-to-fiber insertion loss of 2.1 dB and maximum insertion loss 4.0 dB across all possible connections.
Abstract: We present a microelectromechanical systems-based beam steering optical crossconnect switch core with port count exceeding 1100, featuring mean fiber-to-fiber insertion loss of 2.1 dB and maximum insertion loss of 4.0 dB across all possible connections. The challenge of efficient measurement and optimization of all possible connections was met by an automated testing facility. The resulting connections feature optical loss stability of better than 0.2 dB over days, without any feedback control under normal laboratory conditions.

208 citations

Journal ArticleDOI
TL;DR: In this article, the first isoelectronic differential force measurements between an Au-coated probe and two Aucoated films, made out of Au and Ge, were performed at submicron separations using soft microelectromechanical torsional oscillators.
Abstract: We report the first isoelectronic differential force measurements between an Au-coated probe and two Au-coated films, made out of Au and Ge. These measurements, performed at submicron separations using soft microelectromechanical torsional oscillators, eliminate the need for a detailed understanding of the probe-film Casimir interaction. The observed differential signal is directly converted into limits on the parameters $\ensuremath{\alpha}$ and $\ensuremath{\lambda}$ which characterize Yukawa-like deviations from Newtonian gravity. We find $\ensuremath{\alpha}\ensuremath{\lesssim}{10}^{12}$ for $\ensuremath{\lambda}\ensuremath{\sim}200\text{ }\text{ }\mathrm{nm}$, an improvement of $\ensuremath{\sim}10$ over previous limits.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
28 Oct 2004-Nature
TL;DR: The experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index and confirm the recent theoretical prediction of efficient optical switching in silicon using resonant structures.
Abstract: Photonic circuits, in which beams of light redirect the flow of other beams of light, are a long-standing goal for developing highly integrated optical communication components1,2,3. Furthermore, it is highly desirable to use silicon—the dominant material in the microelectronic industry—as the platform for such circuits. Photonic structures that bend, split, couple and filter light have recently been demonstrated in silicon4,5, but the flow of light in these structures is predetermined and cannot be readily modulated during operation. All-optical switches and modulators have been demonstrated with III–V compound semiconductors6,7, but achieving the same in silicon is challenging owing to its relatively weak nonlinear optical properties. Indeed, all-optical switching in silicon has only been achieved by using extremely high powers8,9,10,11,12,13,14,15 in large or non-planar structures, where the modulated light is propagating out-of-plane. Such high powers, large dimensions and non-planar geometries are inappropriate for effective on-chip integration. Here we present the experimental demonstration of fast all-optical switching on silicon using highly light-confining structures to enhance the sensitivity of light to small changes in refractive index. The transmission of the structure can be modulated by up to 94% in less than 500 ps using light pulses with energies as low as 25 pJ. These results confirm the recent theoretical prediction16 of efficient optical switching in silicon using resonant structures.

1,506 citations