scispace - formally typeset
Search or ask a question
Author

Ho-Joon Shin

Bio: Ho-Joon Shin is an academic researcher from Ajou University. The author has contributed to research in topics: Naegleria fowleri & Acanthamoeba. The author has an hindex of 24, co-authored 100 publications receiving 1810 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found for the first time that JAK2/STAT3 was activated in HeLa cells when they were starved or treated with rapamycin, indicating that the autophagic process in cancer cells can contribute to their survival by JAk2/ STAT3 activation and subsequent secretion of growth factors.
Abstract: Autophagy is one of the survival processes of cancer cells, especially in stressful conditions such as starvation, hypoxia and chemotherapeutic agents. However, its roles in tumor survival have not yet been fully elucidated. Here, we found for the first time that JAK2/STAT3 was activated in HeLa cells when they were starved or treated with rapamycin. STAT3 activation was associated with autophagic processes, because it was completely inhibited by 3-methyladenine, partially inhibited by knockdown of molecules associated with autophagic processes and blocked by antioxidants, DPI, a Nox inhibitor and knockdown of p22 phox, indicating that ROS generated by Nox that was activated during autophagic processes activated JAK2/STAT3 pathway. Activated STAT3 directly bound to IL6 promoter and increased IL6 mRNA and protein secretion. Finally, the conditioned media, which included IL6, from starved HeLa cells promoted cancer cell survival in both normal and starved conditions, confirmed by clonogenic, proliferation and cell death assays. These data together indicate that the autophagic process in cancer cells can contribute to their survival by JAk2/STAT3 activation and subsequent secretion of growth factors.

134 citations

Journal ArticleDOI
Sarah Yoon1, Woo Su1, Kang Jh1, Kyongmin Kim1, Ho-Joon Shin1, Gwak Hs, Saewhan Park1, Chwae Yj1 
19 Jul 2012-Oncogene
TL;DR: Novel survival strategies of cancer cells are suggested by which two oncogenic transcriptional factors, NF-κB and STAT3, are activated simultaneously by an intrinsic mechanism during stressful conditions ofcancer cells, and they cooperatively induce various survival factors.
Abstract: A number of genes involved in tumorigenesis have been known to be controlled by signal transducer and activator of transcription 3 (STAT3) and NF-κB, either synergistically or individually. In starved cancer cells, we found that NF-κB was activated through endoplasmic reticulum stress signals, which depend on reactive oxygen species, cytosolic calcium and preserved translation of NF-κB p65 subunit, but independent of IκBα serine phosphorylation, thereby resulting in IL6 induction. STAT3 was required for proper induction of IL6 by NF-κB. They existed as identical nuclear complexes in proximal IL6 promoters, and STAT3 had critical roles in binding to IL6 promoters as well as nuclear retention of NF-κB. The conditioned media from starved cancer cells contained various secretory factors, such as IL6, IL9, VWF (von Willebrand factor), FREM1 (FRAS1 related extracellular matrix 1), SAA1 (serum amyloid A1), SDK1 (sidekick homolog 1) and ADAM12 (ADAM metallopeptidase domain 12), induced by NF-κB and STAT3 and promoted clonogenic capacities of cancer cells, and proliferation and migration of human umbilical vein endothelial cells. These results suggest novel survival strategies of cancer cells by which two oncogenic transcriptional factors, NF-κB and STAT3, are activated simultaneously by an intrinsic mechanism during stressful conditions of cancer cells, and they cooperatively induce various survival factors.

115 citations

Journal ArticleDOI
TL;DR: Traditional medicinal herbal extracts selected strongly inhibited MHV replication and could be potential candidates for new anti-coronavirus drugs.

115 citations

Journal ArticleDOI
TL;DR: The seroprevalence of toxoplasmosis in pregnant women was found to be comparatively low, consistent with previous reports from Korea, however a variety of diagnostic tools were considered to be useful for the precise diagnosis of congenital toxoplasmaosis.
Abstract: This study was performed in order to evaluate the sero-epidemiological status of toxoplasmosis in pregnant Korean women. Among 5,175 sera and 750 amniotic fluid samples obtained from pregnant women, 41 serum samples (0.79%) and 10 (1.33%) amniotic fluid samples tested positive for IgG antibodies by ELISA. Fifty one cases showing a score more than 0.25 on ELISA were tested for PCR reaction against the SAG1 gene. Only one case of the 51 ELISA positive cases exhibited a positive reaction on all tests. This case had a history of acute nephropyelitis during early pregnancy, but fortunately, had delivered a phenotypically healthy baby. In this study, the seroprevalence of toxoplasmosis in pregnant women was found to be comparatively low, consistent with previous reports from Korea. However our trials, performed with a variety of diagnostic tools, were considered to be useful for the precise diagnosis of congenital toxoplasmosis.

96 citations

Journal ArticleDOI
TL;DR: Exosomal fractions called “apoptotic exosome-like vesicles” (AEVs) prepared from apoptotic-conditioned medium were the main inflammatory factors, suggesting AEVs could be key inflammatory mediators, acting as DAMPs that could explain the pathogeneses of various chronic inflammations, autoimmune diseases, or cancers in the future.
Abstract: Recent research has led to contradictory notions regarding the conventional theory that apoptotic cell death can evoke inflammatory or immunogenic responses orchestrated by released damage-associated patterns (DAMPs). By inducing IL-1β from bone marrow-derived macrophages in an effort to determine the inflammatory mediators released from apoptotic cells, we found that exosomal fractions called “apoptotic exosome-like vesicles” (AEVs) prepared from apoptotic-conditioned medium were the main inflammatory factors. These AEVs showed characteristics of exosomes in their size, density, morphology, and protein expression but had unique marker proteins, sphingosine-1-phosphate receptors 1 and 3 (S1PR1 and 3). Their biogenesis was completely dependent on cellular sphingosine-1-phosphate (S1P)/S1PRs signaling from multiple fine spindles of plasma membrane accompanied by F-actin, S1PR1, S1PR3, and CD63 at the early apoptotic phase and progressing to the maturation of F-actin–guided multivesicular endosomes mediated by Gβγ subunits of S1PRs downstream. S1P-loaded S1PRs on AEVs were critical factors for inducing IL-1β via NF-κB transcriptional factor and p38 MAPK, possibly through the RHOA/NOD2 axis, in differentiating macrophages. The AEVs induced genes of proinflammatory cytokines, chemokines, and mediators in both in vitro and in vivo models. In conclusion, AEVs could be key inflammatory mediators, acting as DAMPs that could explain the pathogeneses of various chronic inflammations, autoimmune diseases, or cancers in the future.

89 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: Treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity.
Abstract: The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors

1,528 citations

Journal ArticleDOI
TL;DR: Since an increase in the number of cases of Acanthamoeba infections has occurred worldwide, these protozoa have become increasingly important as agents of human disease.
Abstract: Acanthamoeba spp. are free-living amebae that inhabit a variety of air, soil, and water environments. However, these amebae can also act as opportunistic as well as nonopportunistic pathogens. They are the causative agents of granulomatous amebic encephalitis and amebic keratitis and have been associated with cutaneous lesions and sinusitis. Immuno compromised individuals, including AIDS patients, are particularly susceptible to infections with Acanthamoeba. The immune defense mechanisms that operate against Acanthamoeba have not been well characterized, but it has been proposed that both innate and acquired immunity play a role. The ameba's life cycle includes an active feeding trophozoite stage and a dormant cyst stage. Trophozoites feed on bacteria, yeast, and algae. However, both trophozoites and cysts can retain viable bacteria and may serve as reservoirs for bacteria with human pathogenic potential. Diagnosis of infection includes direct microscopy of wet mounts of cerebrospinal fluid or stained smears of cerebrospinal fluid sediment, light or electron microscopy of tissues, in vitro cultivation of Acanthamoeba, and histological assessment of frozen or paraffin-embedded sections of brain or cutaneous lesion biopsy material. Immunocytochemistry, chemifluorescent dye staining, PCR, and analysis of DNA sequence variation also have been employed for laboratory diagnosis. Treatment of Acanthamoeba infections has met with mixed results. However, chlorhexidine gluconate, alone or in combination with propamidene isethionate, is effective in some patients. Furthermore, effective treatment is complicated since patients may present with underlying disease and Acanthamoeba infection may not be recognized. Since an increase in the number of cases of Acanthamoeba infections has occurred worldwide, these protozoa have become increasingly important as agents of human disease.

1,163 citations

Journal ArticleDOI
Hennie R. Hoogenboom1
TL;DR: The first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Abstract: During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.

1,057 citations