scispace - formally typeset
Search or ask a question
Author

Hocheol Jang

Bio: Hocheol Jang is an academic researcher from Fairchild Semiconductor International, Inc.. The author has contributed to research in topics: Trench & Power semiconductor device. The author has an hindex of 4, co-authored 4 publications receiving 775 citations.

Papers
More filters
Patent
31 May 2006
TL;DR: In this article, a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance.
Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.

664 citations

Patent
15 Feb 2008
TL;DR: In this article, a semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivities type opposite the first conductivities, and a termination trench extending below the well region and disposed at an outer edge of an active region of the device.
Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material. The first termination trench can be lined with a layer of dielectric material that is thicker than the dielectric material lining the sidewalls of the active trench, and is substantially filled with conductive material.

54 citations

Patent
22 Jan 2008
TL;DR: In this article, a semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region, and an active trench extending through the well region and into the drift regions.
Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region. The active trench, which includes sidewalls and bottom lined with dielectric material, is substantially filled with a first conductive layer and a second conductive layer. The second conductive layer forms a gate electrode and is disposed above the first conductive layer and is separated from the first conductive layer by an inter-electrode dielectric material. The device also includes source regions having the first conductivity type formed inside the well region and adjacent the active trench and a charge control trench that extends deeper into the drift region than the active trench and is substantially filled with material to allow for vertical charge control in the drift region. The charge control trench can be lined with a layer of dielectric material and substantially filled with conductive material. The active trench can include a second shield electrode made of conductive material disposed below the first shield electrode. The first conductive layer inside the active trench can form a secondary gate electrode that is configured to be electrically biased to a desired potential. The semiconductor device can also include a Schottky structure formed between the charge control trench and a second adjacent charge control trench.

47 citations

Patent
09 Sep 2010
TL;DR: In this paper, a semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivities type opposite the first conductivities, and a termination trench extending below the well region and disposed at an outer edge of an active region of the device.
Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material. The first termination trench can be lined with a layer of dielectric material that is thicker than the dielectric material lining the sidewalls of the active trench, and is substantially filled with conductive material.

10 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Patent
23 Jan 2007
TL;DR: In this paper, a gate electrode is disposed, through a gate insulating film, in a trench adjacent to the main cell, and a buffer resistor having an infinitely large resistance value is inserted between the buffer layer and emitter electrode.
Abstract: A power semiconductor device includes trenches disposed in a first base layer of a first conductivity type at intervals to partition main and dummy cells, at a position remote from a collector layer of a second conductivity type. In the main cell, a second base layer of the second conductivity type, and an emitter layer of the first conductivity type are disposed. In the dummy cell, a buffer layer of the second conductivity type is disposed. A gate electrode is disposed, through a gate insulating film, in a trench adjacent to the main cell. A buffer resistor having an infinitely large resistance value is inserted between the buffer layer and emitter electrode. The dummy cell is provided with an inhibiting structure to reduce carriers of the second conductivity type to flow to and accumulate in the buffer layer from the collector layer.

609 citations

Patent
11 May 2007
TL;DR: In this article, a method for fabricating a semiconductor device, in which a lifting phenomenon can be prevented from occurring in forming an amorphous carbon film on an etched layer having tensile stress, was proposed.
Abstract: A method for fabricating a semiconductor device, in which a lifting phenomenon can be prevented from occurring in forming an amorphous carbon film on an etched layer having tensile stress. According to the invention, since a compression stress on the etched layer or the amorphous carbon film can be reduced or a compression stress film is formed between the etched layer or the amorphous carbon film to prevent a lifting phenomenon from occurring and thus another pattern can be formed to fabricate a highly integrated semiconductor device.

212 citations

Patent
15 Sep 2010
TL;DR: In this paper, the Deeply Depleted Channel (DDC) transistors are used to reduce power consumption in devices by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as broader electronics industry to avoid a costly and risky switch to alternative technologies.
Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σVT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.

193 citations

Patent
27 Apr 2011
TL;DR: A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type as discussed by the authors, and each of the plurality of pillars of second conductivities type further includes an implant portion filled with semiconductor material.
Abstract: A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type. Each of the plurality of pillars of second conductivity type further includes a plurality of implant regions of the second conductivity type arranged on top of one another along the depth of pillars of second conductivity type, and a trench portion filled with semiconductor material of the second conductivity type directly above the plurality of implant regions of second conductivity type.

188 citations