scispace - formally typeset
Search or ask a question
Author

Hojjat Adeli

Bio: Hojjat Adeli is an academic researcher from Ohio State University. The author has contributed to research in topics: Artificial neural network & Wavelet. The author has an hindex of 103, co-authored 511 publications receiving 30859 citations. Previous affiliations of Hojjat Adeli include University College of Engineering & Northwestern University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes and achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively.

1,117 citations

Journal ArticleDOI
TL;DR: In this research, discrete Daubechies and harmonic wavelets are investigated for analysis of epileptic EEG records and the capability of this mathematical microscope to analyze different scales of neural rhythms is shown to be a powerful tool for investigating small-scale oscillations of the brain signals.

1,077 citations

Journal ArticleDOI
TL;DR: A state-of-the-art review of the development of spiking neurons and SNNs is presented, and insight into their evolution as the third generation neural networks is provided.
Abstract: Most current Artificial Neural Network (ANN) models are based on highly simplified brain dynamics. They have been used as powerful computational tools to solve complex pattern recognition, function estimation, and classification problems. ANNs have been evolving towards more powerful and more biologically realistic models. In the past decade, Spiking Neural Networks (SNNs) have been developed which comprise of spiking neurons. Information transfer in these neurons mimics the information transfer in biological neurons, i.e., via the precise timing of spikes or a sequence of spikes. To facilitate learning in such networks, new learning algorithms based on varying degrees of biological plausibility have also been developed recently. Addition of the temporal dimension for information encoding in SNNs yields new insight into the dynamics of the human brain and could result in compact representations of large neural networks. As such, SNNs have great potential for solving complicated time-dependent pattern recognition problems because of their inherent dynamic representation. This article presents a state-of-the-art review of the development of spiking neurons and SNNs, and provides insight into their evolution as the third generation neural networks.

694 citations

Journal ArticleDOI
TL;DR: Recent works on integration of neural networks with other computing paradigms such as genetic algorithm, fuzzy logic, and wavelet to enhance the performance of neural network models are presented.
Abstract: The first journal article on neural network application in civil/structural engineering was published by in this journal in 1989. This article reviews neural network articles published in archival research journals since then. The emphasis of the review is on the two fields of structural engineering and construction engineering and management. Neural networks articles published in other civil engineering areas are also reviewed, including environmental and water resources engineering, traffic engineering, highway engineering, and geotechnical engineering. The great majority of civil engineering applications of neural networks are based on the simple backpropagation algorithm. Applications of other recent, more powerful and efficient neural networks models are also reviewed. Recent works on integration of neural networks with other computing paradigms such as genetic algorithm, fuzzy logic, and wavelet to enhance the performance of neural network models are presented.

683 citations

Journal ArticleDOI
TL;DR: It is observed that while there may not be significant differences in the values of the parameters obtained from the original EEG, differences may be identified when the parameters are employed in conjunction with specific EEG subbands.
Abstract: A wavelet-chaos methodology is presented for analysis of EEGs and delta, theta, alpha, beta, and gamma subbands of EEGs for detection of seizure and epilepsy. The nonlinear dynamics of the original EEGs are quantified in the form of the correlation dimension (CD, representing system complexity) and the largest Lyapunov exponent (LLE, representing system chaoticity). The new wavelet-based methodology isolates the changes in CD and LLE in specific subbands of the EEG. The methodology is applied to three different groups of EEG signals: 1) healthy subjects; 2) epileptic subjects during a seizure-free interval (interictal EEG); 3) epileptic subjects during a seizure (ictal EEG). The effectiveness of CD and LLE in differentiating between the three groups is investigated based on statistical significance of the differences. It is observed that while there may not be significant differences in the values of the parameters obtained from the original EEG, differences may be identified when the parameters are employed in conjunction with specific EEG subbands. Moreover, it is concluded that for the higher frequency beta and gamma subbands, the CD differentiates between the three groups, whereas for the lower frequency alpha subband, the LLE differentiates between the three groups

636 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations