scispace - formally typeset
Search or ask a question
Author

Holger Schulz

Bio: Holger Schulz is an academic researcher from University of Hamburg. The author has contributed to research in topics: Population & Medicine. The author has an hindex of 63, co-authored 435 publications receiving 16806 citations. Previous affiliations of Holger Schulz include Ludwig Maximilian University of Munich.


Papers
More filters
Journal ArticleDOI
TL;DR: Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries, while particle uptake in vitro did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions.
Abstract: High concentrations of airborne particles have been associated with increased pulmonary and cardiovascular mortality, with indications of a specific toxicologic role for ultrafine particles (UFPs; particles < 0.1 microm). Within hours after the respiratory system is exposed to UFPs, the UFPs may appear in many compartments of the body, including the liver, heart, and nervous system. To date, the mechanisms by which UFPs penetrate boundary membranes and the distribution of UFPs within tissue compartments of their primary and secondary target organs are largely unknown. We combined different experimental approaches to study the distribution of UFPs in lungs and their uptake by cells. In the in vivo experiments, rats inhaled an ultrafine titanium dioxide aerosol of 22 nm count median diameter. The intrapulmonary distribution of particles was analyzed 1 hr or 24 hr after the end of exposure, using energy-filtering transmission electron microscopy for elemental microanalysis of individual particles. In an in vitro study, we exposed pulmonary macrophages and red blood cells to fluorescent polystyrene microspheres (1, 0.2, and 0.078 microm) and assessed particle uptake by confocal laser scanning microscopy. Inhaled ultrafine titanium dioxide particles were found on the luminal side of airways and alveoli, in all major lung tissue compartments and cells, and within capillaries. Particle uptake in vitro into cells did not occur by any of the expected endocytic processes, but rather by diffusion or adhesive interactions. Particles within cells are not membrane bound and hence have direct access to intracellular proteins, organelles, and DNA, which may greatly enhance their toxic potential.

1,259 citations

Journal ArticleDOI
TL;DR: It is indicated that only a rather small fraction of ultrafine iridium particles has access from peripheral lungs to systemic circulation and extrapulmonary organs, consistent with the hypothesis that ultrafine insoluble particles may play a role in the onset of cardiovascular diseases.
Abstract: Recently it was speculated that ultrafine particles may translocate from deposition sites in the lungs to systemic circulation. This could lead to accumulation and potentially adverse reactions in critical organs such as liver, heart, and even brain, consistent with the hypothesis that ultrafine insoluble particles may play a role in the onset of cardiovascular diseases, as growing evidence from epidemiological studies suggests. Ultrafine (192)Ir radio-labeled iridium particles (15 and 80 nm count median diameter) generated by spark discharging were inhaled by young adult, healthy, male WKY rats ventilated for 1 h via an endotracheal tube. After exposure, excreta were collected quantitatively. At time points ranging from 6 h to 7 d, rats were sacrificed, and a complete balance of (192)Ir activity retained in the body and cleared by excretion was determined gamma spectroscopically. Thoracic deposition fractions of inhaled 15- and 80-nm (192)Ir particles were 0.49 and 0.28, respectively. Both batches of ultrafine iridium particles proved to be insoluble (<1% in 7 d). During wk 1 after inhalation particles were predominantly cleared via airways into the gastrointestinal tract and feces. This cleared fraction includes particles deposited in the alveolar region. Additionally, minute particle translocation of <1% of the deposited particles into secondary organs such as liver, spleen, heart, and brain was measured after systemic uptake from the lungs. The translocated fraction of the 80-nm particles was about an order of magnitude less than that of 15-nm particles. In additional studies, the biokinetics of ultrafine particles and soluble (192)Ir was studied after administration by either gavage or intratracheal instillation or intravenous injection. They confirmed the low solubility of the particles and proved that (1) particles were neither dissolved nor absorbed from the gut, (2) systemically circulating particles were rapidly and quantitatively accumulated in the liver and spleen and retained there, and (3) soluble (192)Ir instilled in the lungs was rapidly excreted via urine with little retention in the lungs and other organs. This study indicates that only a rather small fraction of ultrafine#10; iridium particles has access from peripheral lungs to systemic circulation and extrapulmonary organs. Therefore, the hypothesis that systemic access of ultrafine insoluble particles may generally induce adverse reactions in the cardiovascular system and liver leading to the onset of cardiovascular diseases needs additional detailed and differentiated consideration.

923 citations

Journal ArticleDOI
TL;DR: Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM Exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.
Abstract: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration. Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.

541 citations

Journal ArticleDOI
Emmanouela Repapi1, Ian Sayers2, Louise V. Wain1, Paul Burton1, Toby Johnson3, Ma'en Obeidat2, Jing Hua Zhao4, Adaikalavan Ramasamy5, Guangju Zhai6, Veronique Vitart7, Jennifer E. Huffman7, Wilmar Igl8, E Albrecht, Panagiotis Deloukas9, John Henderson10, Raquel Granell10, Wendy L. McArdle10, Alicja R. Rudnicka11, Inês Barroso9, Loos Rjf.4, Nicholas J. Wareham4, Linda Mustelin12, Taina Rantanen13, Ida Surakka14, Ida Surakka12, Medea Imboden15, H E Wichmann16, Ivica Grković16, Stipan Janković16, Lina Zgaga17, Hartikainen A-L.12, Hartikainen A-L.9, Hartikainen A-L.14, Leena Peltonen14, Leena Peltonen9, Leena Peltonen12, Ulf Gyllensten8, Åsa Johansson8, Ghazal Zaboli8, Harry Campbell18, Sarah H. Wild18, James F. Wilson18, Sven Gläser19, Georg Homuth19, Henry Völzke19, Massimo Mangino6, Nicole Soranzo6, Nicole Soranzo9, Tim D. Spector6, Ozren Polasek17, Igor Rudan18, Igor Rudan16, Alan F. Wright7, Markku Heliövaara14, Samuli Ripatti14, Samuli Ripatti12, Anneli Pouta14, Åsa Torinsson Naluai20, Olin A-C.20, Kjell Torén20, Mark E. Cooper21, Alan James22, Lyle J. Palmer21, Lyle J. Palmer22, Aroon D. Hingorani23, S.G. Wannamethee11, Peter H. Whincup11, George Davey Smith10, Shah Ebrahim24, Tricia M. McKeever2, Ian D. Pavord25, Andrew K. MacLeod7, Andrew D. Morris26, David J. Porteous7, Cyrus Cooper27, Cyrus Cooper28, Elaine M. Dennison27, Seif O. Shaheen14, Stefan Karrasch, E Schnabel, Holger Schulz, H Grallert, Nabila Bouatia-Naji29, Jérôme Delplanque29, Philippe Froguel29, Philippe Froguel5, John D Blakey2, John Britton2, Richard W Morris23, John W. Holloway27, Debbie A Lawlor10, Jennie Hui22, Jennie Hui30, Fredrik Nyberg31, Fredrik Nyberg20, Jarvelin M-R.32, Catherine Jackson33, Mika Kähönen32, Jaakko Kaprio14, Jaakko Kaprio12, Nicole Probst-Hensch15, Nicole Probst-Hensch30, Beate Koch19, Caroline Hayward7, David M. Evans10, Paul Elliott5, Paul Elliott34, David P. Strachan11, Ian P. Hall2, Martin D. Tobin1 
TL;DR: Genome-wide association with forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) in the SpiroMeta consortium offers mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.
Abstract: Pulmonary function measures are heritable traits that predict morbidity and mortality and define chronic obstructive pulmonary disease (COPD). We tested genome-wide association with forced expiratory volume in 1 s (FEV(1)) and the ratio of FEV(1) to forced vital capacity (FVC) in the SpiroMeta consortium (n = 20,288 individuals of European ancestry). We conducted a meta-analysis of top signals with data from direct genotyping (n < or = 32,184 additional individuals) and in silico summary association data from the CHARGE Consortium (n = 21,209) and the Health 2000 survey (n < or = 883). We confirmed the reported locus at 4q31 and identified associations with FEV(1) or FEV(1)/FVC and common variants at five additional loci: 2q35 in TNS1 (P = 1.11 x 10(-12)), 4q24 in GSTCD (2.18 x 10(-23)), 5q33 in HTR4 (P = 4.29 x 10(-9)), 6p21 in AGER (P = 3.07 x 10(-15)) and 15q23 in THSD4 (P = 7.24 x 10(-15)). mRNA analyses showed expression of TNS1, GSTCD, AGER, HTR4 and THSD4 in human lung tissue. These associations offer mechanistic insight into pulmonary function regulation and indicate potential targets for interventions to alleviate respiratory disease.

535 citations

Journal ArticleDOI
29 May 2009-Cell
TL;DR: In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, it is found that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity, suggesting that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.

470 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Abstract: Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.

8,323 citations

Journal ArticleDOI
TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

7,092 citations

Journal ArticleDOI
TL;DR: A comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health.
Abstract: Efforts to understand and mitigate the health effects of particulate matter (PM) air pollution have a rich and interesting history. This review focuses on six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There has been substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.

5,547 citations