scispace - formally typeset
Search or ask a question
Author

Holland C. Ford

Bio: Holland C. Ford is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Galaxy & Galaxy cluster. The author has an hindex of 93, co-authored 347 publications receiving 29661 citations. Previous affiliations of Holland C. Ford include Universities Space Research Association & Space Telescope Science Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the photometric calibration of the Advanced Camera for Surveys (ACS) was presented, and a significant amount of data has been collected to characterize the on-orbit performance of the three channels.
Abstract: We present the photometric calibration of the Advanced Camera for Surveys (ACS). The ACS was installed in the Hubble Space Telescope (HST) in 2002 March. It comprises three cameras: the Wide Field Channel (WFC), optimized for deep near‐IR survey imaging programs; the High Resolution Channel (HRC), a high‐resolution imager that fully samples the HST point‐spread function (PSF) in the visible; and the Solar Blind Channel (SBC), a far‐UV imager. A significant amount of data has been collected to characterize the on‐orbit performance of the three channels. We give here an overview of the performance and calibration of the two CCD cameras (WFC and HRC) and a description of the best techniques for reducing ACS CCD data. The overall performance is as expected from prelaunch testing of the camera. Surprises were a better‐than‐predicted sensitivity in the visible and near‐IR for both the WFC and HRC and an unpredicted dip in the HRC UV response at ∼3200 A. On‐orbit observations of spectrophotometric stand...

1,170 citations

Journal ArticleDOI
TL;DR: In this paper, the photometric calibration of the HST Advanced Camera for Surveys (ACS) is presented, and an overview of the performance and calibration of two CCD cameras, the Wide Field Channel (WFC) and the High Resolution Channel (HRC), and a description of the best techniques for reducing ACS CCD data.
Abstract: We present the photometric calibration of the HST Advanced Camera for Surveys (ACS). We give here an overview of the performance and calibration of the 2 CCD cameras, the Wide Field Channel (WFC) and the High Resolution Channel (HRC), and a description of the best techniques for reducing ACS CCD data. On-orbit observations of spectrophotometric standard stars have been used to revise the pre-launch estimate of the instrument response curves to best match predicted and observed count rates. Synthetic photometry has been used to determine zeropoints for all filters in 3 magnitude systems and to derive interstellar extinction values for the ACS photometric systems. Due to the CCD internal scattering of long wavelength photons, the width of the PSF increases significantly in the near-IR and the aperture correction for photometry with near-IR filters depends on the spectral energy distribution of the source. We provide encircled energy curves and a detailed recipe to correct for the latter effect. Transformations between the ACS photometric systems and the UBVRI and WFPC2 systems are presented. In general, two sets of transformations are available: 1 based on the observation of 2 star clusters; the other on synthetic photometry. We discuss the accuracy of these transformations and their sensitivity to details of the spectra being transformed. Initial signs of detector degradation due to the HST radiative environment are already visible. We discuss the impact on the data in terms of dark rate increase, charge transfer inefficiency, and hot pixel population.

1,155 citations

Journal ArticleDOI
TL;DR: The Cluster Lensing And Supernova Survey with Hubble (CLASH) as mentioned in this paper is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions.
Abstract: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of CDM. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV; 5 - 30 x 10^14 M_solar) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (Einstein radii > 35 arcsec at z_source = 2) to further quantify the lensing bias on concentration, to yield high resolution dark matter maps, and to optimize the likelihood of finding highly magnified high-redshift (z > 7) galaxies. The high magnification, in some cases, provides angular resolutions unobtainable with any current UVOIR facility and can yield z > 7 candidates bright enough for spectroscopic follow-up. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (sigma_phz 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of such supernovae in an epoch when the universe is matter dominated.

805 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z ~ 4 and ~5 and to extend their previous z ~ 6 sample.
Abstract: We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z ~ 4 and ~5 and to extend our previous z ~ 6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L or MUV ~ -16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope ? at z ~ 4-6 to high accuracy. We find faint-end slopes ? = -1.73 ? 0.05, -1.66 ? 0.09, and -1.74 ? 0.16 at z ~ 4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M brightens considerably in the 0.7 Gyr from z ~ 6 to ~4 (by ~0.7 mag from M = -20.24 ? 0.19 to -20.98 ? 0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in * is not significant. The UV luminosity density at z ~ 6 is modestly lower than (0.45 ? 0.09 times) that at z ~ 4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes ? found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z ~ 7-8 are used to extend our estimates of the evolution of M* from z ~ 7-8 to z ~ 4.

686 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend their previous z~6 sample.
Abstract: We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and z~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B, V, and i dropouts, respectively, and reach to extremely low luminosities (0.01-0.04 L* or M(UV)~-16 to -17), allowing us to determine the rest-frame UV luminosity function (LF) and faint-end slope alpha at z~4-6 to high accuracy. We find faint-end slopes alpha of -1.73+/-0.05 at z~4, -1.66+/-0.09 at z~5, and -1.74+/-0.16 at z~6 -- suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*(UV) brightens considerably in the 0.7 Gyr from z~6 to z~4 (by ~0.7 mag from M*=-20.24+/-0.19 to M*=-20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function -- suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in phi* is not significant. The UV luminosity density at z~6 is modestly lower (0.45+/-0.09 times) than that at z~4 (integrated to -17.5 AB mag) though a larger change is seen in the dust-corrected star-formation rate density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes alpha found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, we consider recent search results for galaxies at z~7-8 and use them to extend our estimates of the evolution in M* from z~7-8 to z~4.

663 citations


Cited by
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Abstract: The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and non- luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands to a depth of g' about 23 magnitudes, and a spectroscopic survey of the approximately one million brightest galaxies and 10^5 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS, and serves as an introduction to extensive technical on-line documentation.

10,039 citations

Journal ArticleDOI
Donald G. York1, Jennifer Adelman2, John E. Anderson2, Scott F. Anderson3  +148 moreInstitutions (29)
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Abstract: The Sloan Digital Sky Survey (SDSS) will provide the data to support detailed investigations of the distribution of luminous and nonluminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag, and a spectroscopic survey of the approximately 106 brightest galaxies and 105 brightest quasars found in the photometric object catalog produced by the imaging survey. This paper summarizes the observational parameters and data products of the SDSS and serves as an introduction to extensive technical on-line documentation.

9,835 citations

Journal ArticleDOI
TL;DR: The mass of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05.
Abstract: The masses of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05 The relation is much tighter than the relation between Mbh and bulge luminosity, with a scatter no larger than expected on the basis of measurement error alone Black hole masses recently estimated by Magorrian et al lie systematically above the Mbh-σ relation defined by more accurate mass estimates, some by as much as 2 orders of magnitude The tightness of the Mbh-σ relation implies a strong link between black hole formation and the properties of the stellar bulge

4,557 citations

Journal ArticleDOI
TL;DR: In this article, the authors constructed dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics, assuming that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio, and a central massive dark object of arbitrary mass M•.
Abstract: We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope (HST) photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio , and a central massive dark object (MDO) of arbitrary mass M•. They provide acceptable fits to 32 of the galaxies for some value of M• and ; the four galaxies that cannot be fitted have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fitted galaxies are consistent with the fundamental-plane correlation ∝ L0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M• ~ 0.006Mbulge ≡ 0.006L. Five of the six galaxies consistent with M• = 0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M•. We predict the second-moment profiles that should be observed at HST resolution for the 32 galaxies that our models describe well. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f 0.97 of early-type galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M•/Mbulge) of mean -2.28 and standard deviation ~0.51. There is also marginal evidence that M• is distributed differently for core and power law galaxies, with core galaxies having a somewhat steeper dependence on Mbulge.

3,976 citations