scispace - formally typeset
Search or ask a question
Author

Holly J. Stein

Bio: Holly J. Stein is an academic researcher from University of Oslo. The author has contributed to research in topics: Molybdenite & Geochronology. The author has an hindex of 45, co-authored 164 publications receiving 7693 citations. Previous affiliations of Holly J. Stein include Colorado State University & United States Geological Survey.


Papers
More filters
Journal ArticleDOI
08 Jan 2004-Nature
TL;DR: It is found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa, indicating that atmospheric oxygen was present at significant levels during the deposition of these units.
Abstract: Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10-5 times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and oolites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.

1,277 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Re-Os (rhenium-osmium) chronometer applied to molybdenite (MoS2) to determine the age.
Abstract: The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high-grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID-NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP-MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid-state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point-in-time markers for age comparisons.

525 citations

Journal ArticleDOI
Holly J. Stein1, R. J. Markey, John W. Morgan, A. Du, Y. Sun 
TL;DR: In this paper, an isotope dilution with a modified alkali fusion procedure and negative thermal ion mass spectrometry yields highly precise and accurate Re-Os ages for molybdenite.
Abstract: Isotope dilution with a modified alkali fusion procedure and negative thermal ion mass spectrometry yields highly precise and accurate Re-Os ages for molybdenite from two well-studied molybdenite deposits in the East Qinling molybdenum belt, China. Individual Re-Os ages carry a 2Sigma precision of + or - 0.40 to 0.57 percent which includes a 0.31 percent uncertainty in the 187 Re decay constant. For the unusual carbonatite-hosted Mo-Pb deposit at Huanglongpu, the weighted average of seven analyses yields an age of 221.5 + or - 0.3 (0.15%) Ma. The weighted average of two analyses of molybdenite from a porphyry Mo deposit at Jinduicheng, about 10 km to the southwest, yields an age of 138.4 + or - 0.5 (0.39%) Ma. These data provide uncertainties an order of magnitude less than previous Re-Os ages. Molybdenite Re-Os ages are slightly older than ages obtained by other isotopic methods for genetically related host-rock and vein material. It appears that the direct dating of sulfide, rather than altered host and vein material, may be critical to acquiring the correct age for mineralization.The East Qinling molybdenum belt is part of a larger east-west-trending zone that marks the suture between two major cratonic blocks. Consequently, the belt was a site for Early-Middle Triassic compression (Indosinian orogeny) followed by Jurassic-Cretaceous extension (Yenshanian orogeny). We suggest that the Huanglongpu and Jinduicheng deposits provide an analogue for processes that may have been important in generating major molybdenum deposits in the Colorado mineral belt. In Colorado, Late Cretaceous (Laramide) compression-related, alkalic magmatism was followed by Tertiary (Rio Grande) extension-related, granitic magmatism and the development of major Climax-type porphyry Mo deposits. In particular, the Jinduicheng deposit appears to be a nearly perfect match for Climax-type mineralization in Colorado. In contrast, the older Huanglongpu deposit may record a mechanism whereby molybdenum is concentrated in the lower crust. In both the Qinling molybdenum belt and the Colorado mineral belt, a time gap of about 50 to 80 m.y. separates alkalic magmatism and exceptionally evolved granitic magmatism.

346 citations

Journal ArticleDOI
TL;DR: In this paper, ICP-MS Re-Os isotope analysis was used to date 11 molybdenite samples from five skarn/porphyry/stratabounded Cu-Au-Mo deposits.

304 citations

Journal ArticleDOI
TL;DR: In this paper, the Rooihoogte and Duitschland Formation was used to date synsedimentary to early diagenetic pyrite from carbonaceous shale in the Transvaal Supergroup, South Africa.

232 citations


Cited by
More filters
Journal ArticleDOI
23 May 2008-Science
TL;DR: Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups.
Abstract: Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups. These machines evolved exclusively in microbes early in our planet's history yet, despite their antiquity, are highly conserved. Hence, although there is enormous genetic diversity in nature, there remains a relatively stable set of core genes coding for the major redox reactions essential for life and biogeochemical cycles. These genes created and coevolved with biogeochemical cycles and were passed from microbe to microbe primarily by horizontal gene transfer. A major challenge in the coming decades is to understand how these machines evolved, how they work, and the processes that control their activity on both molecular and planetary scales.

2,345 citations

Journal ArticleDOI
TL;DR: Porphyry Cu systems are the most widely distributed mineralization types at convergent plate boundaries, including porphyry deposits centered on intrusions; skarn, carbonate-replacement, and sediment-hosted Au deposits in increasingly peripheral locations; and superjacent high and intermediate-sulfidation epithermal deposits as mentioned in this paper.
Abstract: Porphyry Cu systems host some of the most widely distributed mineralization types at convergent plate boundaries, including porphyry deposits centered on intrusions; skarn, carbonate-replacement, and sediment-hosted Au deposits in increasingly peripheral locations; and superjacent high- and intermediate-sulfidation epithermal deposits. The systems commonly define linear belts, some many hundreds of kilometers long, as well as occurring less commonly in apparent isolation. The systems are closely related to underlying composite plutons, at paleodepths of 5 to 15 km, which represent the supply chambers for the magmas and fluids that formed the vertically elongate (>3 km) stocks or dike swarms and associated mineralization. The plutons may erupt volcanic rocks, but generally prior to initiation of the systems. Commonly, several discrete stocks are emplaced in and above the pluton roof zones, resulting in either clusters or structurally controlled alignments of porphyry Cu systems. The rheology and composition of the host rocks may strongly influence the size, grade, and type of mineralization generated in porphyry Cu systems. Individual systems have life spans of ~100,000 to several million years, whereas deposit clusters or alignments as well as entire belts may remain active for 10 m.y. or longer. The alteration and mineralization in porphyry Cu systems, occupying many cubic kilometers of rock, are zoned outward from the stocks or dike swarms, which typically comprise several generations of intermediate to felsic porphyry intrusions. Porphyry Cu ± Au ± Mo deposits are centered on the intrusions, whereas carbonate wall rocks commonly host proximal Cu-Au skarns, less common distal Zn-Pb and/or Au skarns, and, beyond the skarn front, carbonate-replacement Cu and/or Zn-Pb-Ag ± Au deposits, and/or sediment-hosted (distal-disseminated) Au deposits. Peripheral mineralization is less conspicuous in noncarbonate wall rocks but may include base metal- or Au-bearing veins and mantos. High-sulfidation epithermal deposits may occur in lithocaps above porphyry Cu deposits, where massive sulfide lodes tend to develop in deeper feeder structures and Au ± Ag-rich, disseminated deposits within the uppermost 500 m or so. Less commonly, intermediate-sulfidation epithermal mineralization, chiefly veins, may develop on the peripheries of the lithocaps. The alteration-mineralization in the porphyry Cu deposits is zoned upward from barren, early sodic-calcic through potentially ore-grade potassic, chlorite-sericite, and sericitic, to advanced argillic, the last of these constituting the lithocaps, which may attain >1 km in thickness if unaffected by significant erosion. Low sulfidation-state chalcopyrite ± bornite assemblages are characteristic of potassic zones, whereas higher sulfidation-state sulfides are generated progressively upward in concert with temperature decline and the concomitant greater degrees of hydrolytic alteration, culminating in pyrite ± enargite ± covellite in the shallow parts of the litho-caps. The porphyry Cu mineralization occurs in a distinctive sequence of quartz-bearing veinlets as well as in disseminated form in the altered rock between them. Magmatic-hydrothermal breccias may form during porphyry intrusion, with some of them containing high-grade mineralization because of their intrinsic permeability. In contrast, most phreatomagmatic breccias, constituting maar-diatreme systems, are poorly mineralized at both the porphyry Cu and lithocap levels, mainly because many of them formed late in the evolution of systems. Porphyry Cu systems are initiated by injection of oxidized magma saturated with S- and metal-rich, aqueous fluids from cupolas on the tops of the subjacent parental plutons. The sequence of alteration-mineralization events charted above is principally a consequence of progressive rock and fluid cooling, from >700° to <250°C, caused by solidification of the underlying parental plutons and downward propagation of the lithostatic-hydrostatic transition. Once the plutonic magmas stagnate, the high-temperature, generally two-phase hyper-saline liquid and vapor responsible for the potassic alteration and contained mineralization at depth and early overlying advanced argillic alteration, respectively, gives way, at <350°C, to a single-phase, low- to moderate-salinity liquid that causes the sericite-chlorite and sericitic alteration and associated mineralization. This same liquid also causes mineralization of the peripheral parts of systems, including the overlying lithocaps. The progressive thermal decline of the systems combined with synmineral paleosurface degradation results in the characteristic overprinting (telescoping) and partial to total reconstitution of older by younger alteration-mineralization types. Meteoric water is not required for formation of this alteration-mineralization sequence although its late ingress is commonplace. Many features of porphyry Cu systems at all scales need to be taken into account during planning and execution of base and precious metal exploration programs in magmatic arc settings. At the regional and district scales, the occurrence of many deposits in belts, within which clusters and alignments are prominent, is a powerful exploration concept once one or more systems are known. At the deposit scale, particularly in the porphyry Cu environment, early-formed features commonly, but by no means always, give rise to the best ore-bodies. Late-stage alteration overprints may cause partial depletion or complete removal of Cu and Au, but metal concentration may also result. Recognition of single ore deposit types, whether economic or not, in porphyry Cu systems may be directly employed in combination with alteration and metal zoning concepts to search for other related deposit types, although not all those permitted by the model are likely to be present in most systems. Erosion level is a cogent control on the deposit types that may be preserved and, by the same token, on those that may be anticipated at depth. The most distal deposit types at all levels of the systems tend to be visually the most subtle, which may result in their being missed due to overshadowing by more prominent alteration-mineralization.

2,211 citations

Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a model for the evolution of the North China Craton that envisages discrete Eastern and Western Blocks that developed independently during the Archean and collided along the Trans-North China Orogen during a Paleoproterozoic orogenic event.

1,955 citations

Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth’s history.
Abstract: The rapid increase of carbon dioxide concentration in Earth’s modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth’s history.

1,821 citations