scispace - formally typeset
Search or ask a question
Author

Holly K. Dressman

Bio: Holly K. Dressman is an academic researcher from Duke University. The author has contributed to research in topics: Gene expression & Gene expression profiling. The author has an hindex of 45, co-authored 93 publications receiving 10631 citations. Previous affiliations of Holly K. Dressman include Durham University & University of Virginia.


Papers
More filters
Journal ArticleDOI
19 Jan 2006-Nature
TL;DR: It is shown that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways and linked with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogens pathway signatures to guide the use of targeted therapeutics.
Abstract: The development of an oncogenic state is a complex process involving the accumulation of multiple independent mutations that lead to deregulation of cell signalling pathways central to the control of cell growth and cell fate. The ability to define cancer subtypes, recurrence of disease and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Various studies have also demonstrated the potential for using gene expression profiles for the analysis of oncogenic pathways. Here we show that gene expression signatures can be identified that reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumours and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumour subtypes. Clustering tumours based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Predictions of pathway deregulation in cancer cell lines are also shown to predict the sensitivity to therapeutic agents that target components of the pathway. Linking pathway deregulation with sensitivity to therapeutics that target components of the pathway provides an opportunity to make use of these oncogenic pathway signatures to guide the use of targeted therapeutics.

1,987 citations

Journal ArticleDOI
TL;DR: Bayesian regression models that provide predictive capability based on gene expression data derived from DNA microarray analysis of a series of primary breast cancer samples are developed and the utility and validity of such models in predicting the status of tumors in crossvalidation determinations are assessed.
Abstract: Prognostic and predictive factors are indispensable tools in the treatment of patients with neoplastic disease. For the most part, such factors rely on a few specific cell surface, histological, or gross pathologic features. Gene expression assays have the potential to supplement what were previously a few distinct features with many thousands of features. We have developed Bayesian regression models that provide predictive capability based on gene expression data derived from DNA microarray analysis of a series of primary breast cancer samples. These patterns have the capacity to discriminate breast tumors on the basis of estrogen receptor status and also on the categorized lymph node status. Importantly, we assess the utility and validity of such models in predicting the status of tumors in crossvalidation determinations. The practical value of such approaches relies on the ability not only to assess relative probabilities of clinical outcomes for future samples but also to provide an honest assessment of the uncertainties associated with such predictive classifications on the basis of the selection of gene subsets for each validation analysis. This latter point is of critical importance in the ability to apply these methodologies to clinical assessment of tumor phenotype.

1,408 citations

Journal ArticleDOI
TL;DR: Multiple aggregate measures of profiles of gene expression define valuable predictive associations with lymph node metastasis and disease recurrence for individual patients, and are capable of predicting outcomes in individual patients with about 90% accuracy.

665 citations

Journal ArticleDOI
TL;DR: The lung metagene model provides a potential mechanism to refine the estimation of a patient's risk of disease recurrence and, in principle, to alter decisions regarding the use of adjuvant chemotherapy in early-stage NSCLC.
Abstract: Background Clinical trials have indicated a benefit of adjuvant chemotherapy for patients with stage IB, II, or IIIA — but not stage IA — non–small-cell lung cancer (NSCLC). This classification scheme is probably an imprecise predictor of the prognosis of an individual patient. Indeed, approximately 25 percent of patients with stage IA disease have a recurrence after surgery, suggesting the need to identify patients in this subgroup for more effective therapy. Methods We identified gene-expression profiles that predicted the risk of recurrence in a cohort of 89 patients with early-stage NSCLC (the lung metagene model). We evaluated the predictor in two independent groups of 25 patients from the American College of Surgeons Oncology Group (ACOSOG) Z0030 study and 84 patients from the Cancer and Leukemia Group B (CALGB) 9761 study. Results The lung metagene model predicted recurrence for individual patients significantly better than did clinical prognostic factors and was consistent across all early stages ...

600 citations

Journal ArticleDOI
TL;DR: Using in vitro drug sensitivity data coupled with Affymetrix microarray data, gene expression signatures that predict sensitivity to individual chemotherapeutic drugs are developed that can accurately predict clinical response in individuals treated with these drugs.
Abstract: Using in vitro drug sensitivity data coupled with Affymetrix microarray data, we developed gene expression signatures that predict sensitivity to individual chemotherapeutic drugs. Each signature was validated with response data from an independent set of cell line studies. We further show that many of these signatures can accurately predict clinical response in individuals treated with these drugs. Notably, signatures developed to predict response to individual agents, when combined, could also predict response to multidrug regimens. Finally, we integrated the chemotherapy response signatures with signatures of oncogenic pathway deregulation to identify new therapeutic strategies that make use of all available drugs. The development of gene expression profiles that can predict response to commonly used cytotoxic agents provides opportunities to better use these drugs, including using them in combination with existing targeted therapies.

545 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is shown that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation, and an algorithm called LARS‐EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lamba.
Abstract: Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together.The elastic net is particularly useful when the number of predictors (p) is much bigger than the number of observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the

16,538 citations

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: DNA microarray analysis on primary breast tumours of 117 young patients is used and supervised classification is applied to identify a gene expression signature strongly predictive of a short interval to distant metastases (‘poor prognosis’ signature) in patients without tumour cells in local lymph nodes at diagnosis, providing a strategy to select patients who would benefit from adjuvant therapy.
Abstract: Breast cancer patients with the same stage of disease can have markedly different treatment responses and overall outcome. The strongest predictors for metastases (for example, lymph node status and histological grade) fail to classify accurately breast tumours according to their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastases by approximately one-third; however, 70-80% of patients receiving this treatment would have survived without it. None of the signatures of breast cancer gene expression reported to date allow for patient-tailored therapy strategies. Here we used DNA microarray analysis on primary breast tumours of 117 young patients, and applied supervised classification to identify a gene expression signature strongly predictive of a short interval to distant metastases ('poor prognosis' signature) in patients without tumour cells in local lymph nodes at diagnosis (lymph node negative). In addition, we established a signature that identifies tumours of BRCA1 carriers. The poor prognosis signature consists of genes regulating cell cycle, invasion, metastasis and angiogenesis. This gene expression profile will outperform all currently used clinical parameters in predicting disease outcome. Our findings provide a strategy to select patients who would benefit from adjuvant therapy.

9,664 citations

Journal ArticleDOI
TL;DR: The gene-expression profile studied is a more powerful predictor of the outcome of disease in young patients with breast cancer than standard systems based on clinical and histologic criteria.
Abstract: Background A more accurate means of prognostication in breast cancer will improve the selection of patients for adjuvant systemic therapy. Methods Using microarray analysis to evaluate our previously established 70-gene prognosis profile, we classified a series of 295 consecutive patients with primary breast carcinomas as having a gene-expression signature associated with either a poor prognosis or a good prognosis. All patients had stage I or II breast cancer and were younger than 53 years old; 151 had lymph-node–negative disease, and 144 had lymph-node–positive disease. We evaluated the predictive power of the prognosis profile using univariable and multivariable statistical analyses. Results Among the 295 patients, 180 had a poor-prognosis signature and 115 had a good-prognosis signature, and the mean (±SE) overall 10-year survival rates were 54.6±4.4 percent and 94.5±2.6 percent, respectively. At 10 years, the probability of remaining free of distant metastases was 50.6±4.5 percent in the group with a...

5,902 citations

Journal ArticleDOI
Debra A. Bell1, Andrew Berchuck2, Michael J. Birrer3, Jeremy Chien1  +282 moreInstitutions (35)
30 Jun 2011-Nature
TL;DR: It is reported that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1,BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes.
Abstract: A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

5,878 citations

01 Jun 2011
TL;DR: The Cancer Genome Atlas project has analyzed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours as mentioned in this paper.
Abstract: A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients’ lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology.

5,609 citations