scispace - formally typeset
Search or ask a question
Author

Hong Chen

Bio: Hong Chen is an academic researcher from Southern University of Science and Technology. The author has contributed to research in topics: Perovskite (structure) & Catalysis. The author has an hindex of 39, co-authored 136 publications receiving 5171 citations. Previous affiliations of Hong Chen include Royal Institute of Technology & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
TL;DR: Mechanistic studies indicate that the nickel–vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites, and may expand the scope of cost-effective electrocatalysts for water splitting.
Abstract: Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial require ...

784 citations

Journal ArticleDOI
TL;DR: A thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide is demonstrated.
Abstract: Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

578 citations

Journal ArticleDOI
TL;DR: The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements.
Abstract: Vacancy-rich layered materials with good electron transfer property are of great interesting. Herein, full spectrum responsive vacancy-rich monolayer BiO2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO2-x are responsible for the enhanced photon responsibility and photo-absorption, which was confirmed by UV-vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO2-x, monolayer BiO2-x exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible and near-infrared light (NIR) irradiation attributed to the vacancy associates VBi-O‴ as confirmed by the positron annihilation spectra. The presence of VBi-O‴ defects in monolayer BiO2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient ultraviolet (UV), visible and NIR light responsive photocatalysts.

350 citations

Journal ArticleDOI
TL;DR: A promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-Iron-Copper alloy as a precursor, as the catalyst for water oxidation, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction.
Abstract: Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nick ...

316 citations

Journal ArticleDOI
03 Dec 2018-ACS Nano
TL;DR: In situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the O ER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.
Abstract: As one of the most remarkable oxygen evolution reaction (OER) electrocatalysts, metal chalcogenides have been intensively reported during the past few decades because of their high OER activities. It has been reported that electron-chemical conversion of metal chalcogenides into oxides/hydroxides would take place after the OER. However, the transition mechanism of such unstable structures, as well as the real active sites and catalytic activity during the OER for these electrocatalysts, has not been understood yet; therefore a direct observation for the electrocatalytic water oxidation process, especially at nano or even angstrom scale, is urgently needed. In this research, by employing advanced Cs-corrected transmission electron microscopy (TEM), a step by step oxidational evolution of amorphous electrocatalyst CoS x into crystallized CoOOH in the OER has been in situ captured: irreversible conversion of CoS x to crystallized CoOOH is initiated on the surface of the electrocatalysts with a morphology change via Co(OH)2 intermediate during the OER measurement, where CoOOH is confirmed as the real active species. Besides, this transition process has also been confirmed by multiple applications of X-ray photoelectron spectroscopy (XPS), in situ Fourier-transform infrared spectroscopy (FTIR), and other ex situ technologies. Moreover, on the basis of this discovery, a high-efficiency electrocatalyst of a nitrogen-doped graphene foam (NGF) coated by CoS x has been explored through a thorough structure transformation of CoOOH. We believe this in situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the OER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.

307 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

Journal ArticleDOI
TL;DR: This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
Abstract: Metal–organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure–property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

2,239 citations

Journal ArticleDOI
TL;DR: A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies and the role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water.
Abstract: ion step follows the decarboxylation, which is consistent with the deuterium isotopic effects observed for thymine 7-hydroxylase which indicate that an irreversible step (or steps) occurs prior to the C-H bond breaking.395 It has also been shown for prolyl 4-hydroxylase that a substrate-derived radical is generated in the reaction, which is consistent with a rebound mechanism.437 It is important to point out that no oxygen intermediate (i.e., bridged superoxo or oxo-ferryl) has been observed for any R-KGdependent enzyme. This warrants future theoretical and experimental study. A detailed molecular mechanism has been proposed for IPNS based on spectroscopic and crystallographic studies.422 Resting IPNS/FeII is also 6C and thus relatively stable toward dioxygen. Substrate ACV binds directly to FeII IPNS through its thiolate group, providing an open coordination position at the FeII. O2 can then react to form an FeIII-superoxo intermediate. This intermediate is suggested422 to perform the first hydrogen-atom abstraction step and close the â-lactam ring, resulting in the formation of the first water molecule and generating an FeIVdO-II intermediate, which completes the second ringclosure process by hydrogen-atom abstraction forming a thiazolidine ring. Previously proposed mechanisms of ACCO involved direct binding of cosubstrate ascorbate to the iron before O2 as part of the oxygen activation process.438,439 The EPR and ESEEM studies of the NO complex of ACCO suggested a quite different molecular mechanism for ACCO.435 An FeIII-superoxo intermediate is proposed. Whether it is preceded by a 6C f 5C process with substrate binding is presently under study.440 This intermediate is thought to initiate a radical process by single hydrogen-atom abstraction or electron-coupled proton transfer (PT)ion or electron-coupled proton transfer (PT) from the bound amino group. The resulting substrate radical may undergo spontaneous conversion into products. The role of cosubstrate ascorbate is proposed to reduce the toxic peroxo byproduct to water. Alternatively, the two-electron reduction of FeIIIsuperoxo by the cosubstrate ascorbate could result in an FeIVdO-II intermediate which initiates the radical reaction.435 4. Rieske-Type Dioxygenases Biochemical Characterization. The Rieske ironsulfur center is a two iron-two sulfur cluster ([2Fe2S]) which has a 2His (on one iron), 2Cys (on the other iron) coordination environment, instead of the 4Cys present in plant ferredoxins. It plays a key role in the electron transport pathway in membranebound cytochrome complexes as well as in some dioxygenases.441 The latter are mainly comprised of two protein components: a reductase containing flavin and a ferredoxin [2Fe-2S], and a terminal oxygenase containing a Rieske [2Fe-2S] cluster and a non-heme iron active site.442 Except for the recently reported alkene monooxygenase that has a binuclear iron site in its terminal oxygenase,10 most of the Rieske-type oxygenases have a mononuclear iron site, which is believed to be the site of dioxygen activation and substrate oxygenation.442,443 The majority of the Rieske-type mononuclear non-heme oxygenases form a family of enzymes which are aromatic-ring-hydroxylating dioxygenases. These catalyze the regioand stereospecific cis-dihydroxylation of an aromatic ring using dioxygen and NAD(P)H (Table 1). Examples include benzene dioxygenase (BDO, EC 1.14.12.3),444 phthalate dioxygenase (PDO, EC 1.14.12.7),445 toluene dioxygenase (EC 1.14.12.11),446 and naphthalene 1,2-dioxygenase (NDO, EC 1.14.12.12),447 which initiate the aerobic degradation of aromatic compounds in the soil bacteria and are targets for bioengineering in bioremediation. This step is the first step in the pathway that ultimately leads to ring cleavage by the intraand extradiol dioxygenases (sections II.B.2 and II.C.1).443 Besides these bacterial dioxygenases, other Rieske-type mononuclear non-heme oxygenases include anthranilate 1,2-dioxygenase (EC 1.14.12.1),448 which deaminates and decarboxylates the substrate to produce catechol; chlorophenylacetate 3,4-dioxygenase (EC 1.14.2.13),449 which converts substrate to catechol with chloride elimination; and 4-methoxybenzoate O-demethylase (putidamonooxin),450 which catalyzes the conversion of 4-methoxybenzoic acid to 4-hydroxybenzoic acid and formaldehyde. The reductase component is usually a monomer (MW ) 12-15 kDa) and utilizes flavin to mediate ET from the two-electron donor NAD(P)H to the oneelectron acceptor [2Fe-2S] cluster and is specific to each terminal oxygenase; other electron donors do not support efficient oxygenation.442 The crystal structure of phthalate dioxygenase reductase is available.451 The terminal oxygenases are large protein aggregates (MW ) 150-200 kDa) containing either multiples of R subunits (BDO R2, PDO R4) or an equimolar combination of R and â subunits (toluene dioxygenase R2â2, NDO R3â3). The R subunits contain a Rieske [2Fe-2S] cluster and a catalytic non-heme FeII center. â subunits do not seem to be involved in the catalytic function (vide infra). Kinetics. Steady-state kinetic studies coupled with various rapid reaction studies of the partial reactions of PDO allowed Ballou et al. to propose a kinetic scheme (Scheme 15).443 On the basis of steady state 278 Chemical Reviews, 2000, Vol. 100, No. 1 Solomon et al.

1,503 citations

Journal ArticleDOI
TL;DR: The fundamental relationships between electronic structure, adsorption energy, and apparent activity for a wide variety of 2D electrocatalysts are described with the goal of providing a better understanding of these emerging nanomaterials at the atomic level.
Abstract: Over the past few decades, the design and development of advanced electrocatalysts for efficient energy conversion technologies have been subjects of extensive study. With the discovery of graphene, two-dimensional (2D) nanomaterials have emerged as some of the most promising candidates for heterogeneous electrocatalysts due to their unique physical, chemical, and electronic properties. Here, we review 2D-nanomaterial-based electrocatalysts for selected electrocatalytic processes. We first discuss the unique advances in 2D electrocatalysts based on different compositions and functions followed by specific design principles. Following this overview, we discuss various 2D electrocatalysts for electrocatalytic processes involved in the water cycle, carbon cycle, and nitrogen cycle from their fundamental conception to their functional application. We place a significant emphasis on different engineering strategies for 2D nanomaterials and the influence these strategies have on intrinsic material performance, ...

1,363 citations