scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: A series of first-in-class small molecular RhoA inhibitors have been discovered by using structure-based virtual screening in conjunction with chemical synthesis and bioassay, and two compounds demonstrated noticeable vasorelaxation effects against PE-induced contraction in thoracic aorta artery rings.
Abstract: RhoA is a member of Rho GTPases, a subgroup of the Ras superfamily of small GTP-binding proteins. RhoA, as an important regulator of diverse cellular signaling pathways, plays significant roles in cytoskeletal organization, transcription, and cell-cycle progression. The RhoA/ROCK inhibitors have emerged as a new promising treatment for cardiovascular diseases. However, to date, RhoA inhibitors are macromolecules, and to our knowledge, small molecular-based inhibitors have not been reported. In this study, a series of first-in-class small molecular RhoA inhibitors have been discovered by using structure-based virtual screening in conjunction with chemical synthesis and bioassay. Virtual screening of ∼200,000 compounds, followed by SPR-based binding affinity assays resulted in three compounds with binding affinities to RhoA at the micromolar level (compounds 1–3). Compound 1 was selected for further structure modifications in considering binding activity and synthesis ease. Fourty-one new compounds (1, 12a–...

39 citations

Journal ArticleDOI
TL;DR: An integrated chip for isolation of EVs with a double-filtration unit and ultrasensitive detection using photonic crystal (PC) nanostructure is reported, providing an effective method for pre-screening of cancer in clinical samples.
Abstract: Extracellular vesicles (EVs), involved in many diseases and pathophysiological processes, have emerged as potential biomarkers for cancer diagnosis. However, efficient isolation and detection of EVs still remain challenging. Here, we report an integrated chip for isolation of EVs with a double-filtration unit and ultrasensitive detection using photonic crystal (PC) nanostructure. Nanofiltration membranes were integrated into the device to isolate and enrich the EVs of 20-200 nm in size based on size-exclusion. Then, CD63 aptamers were used to combine the EVs on the nanofiltration membrane with a pore size of 20 nm, and excess aptamers passed through the membrane to bind with CD63 immobilized on the PC nanostructure. Benefitting from the fluorescence enhancement effect of the PC nanostructure in competition assays, the EVs could be quantified sensitively by analyzing the concentration of excess aptamers. Due to the high sensitivity, the limit of detection was as low as 8.9 × 103 EVs per mL with a low sample consumption of only 20 μL. Furthermore, serum samples from breast cancer patients and healthy donors could be successfully distinguished. Thus, this microfluidic chip provides an effective method for pre-screening of cancer in clinical samples.

39 citations

Journal ArticleDOI
TL;DR: A gold nanoparticle-assembled, 3D-interconnected, graphene microchannel-embedded PDMS (3D GMC-PDMS) film for strain and pressure sensors that has broad applications as a traditional or wearable medical sensor and a sensitivity improvement of 40 times in the 0-1 kPa pressure range.
Abstract: Manufacture of uniform, sensitive, and durable microtextured sensing materials is one of the greatest challenges for pressure sensors and electronic skins. Reported in this article is a gold nanoparticle-assembled, 3D-interconnected, graphene microchannel-embedded PDMS (3D GMC-PDMS) film for strain and pressure sensors. The film consists of porous nickel foam with its inner walls coated by multilayer graphene. Embedding in PDMS with etching removal of the Ni yields a 3D GMC-PDMS. Coating the inner walls with Au nanoparticles yields an Au nanoparticle-assembled 3D GMC-PDMS (AuNPs-GMC-PDMS) film, which is useful as an ultrasensitive pressure and strain sensor. This sensor exhibits a wide detection range (∼50 kPa) and ultrahigh sensitivity of 5.37, 1.56, and 0.5 kPa-1 in the ranges of <1, 1-10, and 10-50 kPa, respectively. Its lower detection limit is 4.4 Pa, its response time is 20 ms, and its strain factor is up to 15. Comparison of a AuNPs-GMC-PDMS film with a 3D GMC-PDMS film reveals a sensitivity improvement of 40 times in the 0-1 kPa pressure range and a gauge factor of more than 4 times in the 0-30% tensile strain range. The device has broad applications as a traditional or wearable medical sensor.

39 citations

Journal ArticleDOI
TL;DR: In this article, a gold(I) complex and trifluoroacetic acid (TFA) cocatalyzed one-pot, Michael addition/intramolecular cyclization cascade reaction for the synthesis of unusual tetracyclic indoles containing a seven-membered ring in water with microwave irradiation was described.

39 citations

Journal ArticleDOI
TL;DR: Dihydroartemisinin, one of the most active derivatives of ArtemisinIn, directly targets platelet-derived growth factor receptor-alpha (PDGFRα) to inhibit ovarian cancer cell growth and metastasis and shed high light on future development of novel Artemisinin-based targeted therapy.
Abstract: To develop traditional medicines as modern pharmacotherapies, understanding their molecular mechanisms of action can be very helpful. We have recently reported that Artemisinin and its derivatives, which are clinically used anti-malarial drugs, have significant effects against ovarian cancer, but the direct molecular targets and related combination therapy have been unclear. Herein, we report that dihydroartemisinin, one of the most active derivatives of Artemisinin, directly targets platelet-derived growth factor receptor-alpha (PDGFRα) to inhibit ovarian cancer cell growth and metastasis. Dihydroartemisinin directly binds to the intercellular domain of PDGFRα, reducing its protein stability by accelerating its ubiquitin-mediated degradation, which further inactivates downstream phosphoinositide 3-Kinase and mitogen-activated protein kinase pathways and subsequently represses epithelial–mesenchymal transition, inhibiting cell growth and metastasis of PDGFRα-positive ovarian cancer in vitro and in vivo. A combinational treatment reveals that dihydroartemisinin sensitizes ovarian cancer cells to PDGFR inhibitors. Our clinical study also finds that PDGFRα is overexpressed and positively correlated with high grade and metastasis in human ovarian cancer. Considering that Artemisinin compounds are currently clinically used drugs with favorable safety profiles, the results from this study will potentiate their use in combination with clinically used PDGFRα inhibitors, leading to maximal therapeutic efficacy with minimal adverse effects in PDGFRα-positive cancer patients. These findings also shed high light on future development of novel Artemisinin-based targeted therapy.

39 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations