scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, G. filicina polysaccharide (GFP) and low molecular weight (MW) GFP were applied to rice seeds under salt stress, and LGFP-1 showed the best effect on germination potential, germination index, shoot/root length and vigor index.

32 citations

Journal ArticleDOI
TL;DR: Cellular assay indicated that compound 43 has no toxicity to neuronal cells, and can effectively inhibit Abeta(1-42)-induced neutrotoxicity and increase the cell viability, and on the basis of these positive results, these novel chemical structures may provide a promising potential for therapeutic applications in AD and other types of neurodegenerative disorders.
Abstract: The aggregation of Aβ is a crucial step in the etiology of Alzheimer’s disease. Our previous work showed that Aβ undergoes α-helix/β-sheet intermediate structures during the conformational transition, and an Aβ aggregation inhibitor (1) was discovered by targeting the intermediates. Here, structure optimization toward compound 1 was performed and 34 novel derivatives were designed and synthesized. Nine compounds showed more effective inhibitory activity than the hit compound 1 in ThT fluorescence assay. Among them, compound 43 demonstrated more excellent inhibitory potency, which not only can suppress the aggregation of Aβ but also can dissolve the preformed fibrils as shown by CD spectroscopy, PICUP and AFM assays. Cellular assay indicated that 43 has no toxicity to neuronal cells, moreover, can effectively inhibit Aβ1−42-induced neutrotoxicity and increase the cell viability. Together, on the basis of these positive results, these novel chemical structures may provide a promising potential for therapeut...

32 citations

Journal ArticleDOI
TL;DR: Graphene-based biosensors have generated tremendous interest, made significant advances, and offered promising application prospects as mentioned in this paper, and have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes.
Abstract: The early diagnosis of diseases plays a vital role in healthcare and the extension of human life. Graphene-based biosensors have boosted the early diagnosis of diseases by detecting and monitoring related biomarkers, providing a better understanding of various physiological and pathological processes. They have generated tremendous interest, made significant advances, and offered promising application prospects. In this paper, we discuss the background of graphene and biosensors, including the properties and functionalization of graphene and biosensors. Second, the significant technologies adopted by biosensors are discussed, such as field-effect transistors and electrochemical and optical methods. Subsequently, we highlight biosensors for detecting various biomarkers, including ions, small molecules, macromolecules, viruses, bacteria, and living human cells. Finally, the opportunities and challenges of graphene-based biosensors and related broad research interests are discussed.

32 citations

Journal ArticleDOI
Guogang Xu, Xudong Zhang, Wen He, Hong Liu1, Hong Li 
TL;DR: In this paper, nano-sized YAG powders were synthesized using the co-precipitation method with ammonium hydrogen carbonate as precipitant, nonionic, anionic and cationic surfactant as dispersant, respectively.

32 citations

Journal ArticleDOI
TL;DR: Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.
Abstract: Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is in extremely high demand due to the pharmaceutical importance of this tailor-made, sterically constrained α-amino acid. Here we report the development of an advanced procedure for preparation of the target amino acid via two-step SN2 and SN2' alkylation of novel axially chiral nucleophilic glycine equivalent. Excellent yields and diastereoselectivity coupled with reliable and easy scalability render this method of immediate use for practical synthesis of (1R,2S)-vinyl-ACCA.

32 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations