scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel molecular mechanism is revealed regarding the regulation of PD‐L1 via p62, thus providing a novel therapeutic strategy by the combination treatment of CTLA‐4 with Sunitinib.
Abstract: Immune checkpoints blockades have shown promising clinical effects in various malignancies, but the overall response rate is low. Here, the immune features are comprehensively characterized in >10 000 cancer patients from The Cancer Genome Atlas and significantly positive correlations are observed between targets of Sunitinib and inhibitory immune checkpoints and suppressive immune cells. It is further confirmed that Sunitinib treatment increases the antitumor immunity in a phase III trial. Mechanistically, it is discovered that Sunitinib regulates the stability of tumor PD-L1 via p62, that p62 can bind to PD-L1 and specifically promote its translocation into autophagic lysosome for degradation. Preclinically, Sunitinib shows a synergistic antitumor effect with cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) monoclonal antibody (mAb) in melanoma and nonsmall cell lung cancer (NSCLC) immune competent mice by promoting the tumor-infiltrating lymphocytes activity. Clinically, a higher PD-L1 level but a lower p62 level in the tumor region of responders as compared to those of nonresponders among anti-PD-1-treated NSCLC patients is observed. Taken together, by utilizing rigorous computational analysis, functional characterization in vitro and in vivo, and neoadjuvent clinical trial, a novel molecular mechanism is revealed regarding the regulation of PD-L1 via p62, thus providing a novel therapeutic strategy by the combination treatment of CTLA-4 with Sunitinib.

26 citations

Journal ArticleDOI
08 Jan 2019-PeerJ
TL;DR: The edible seaweed Caulerpa lentillifera, a powerful natural food source that is rich in protein, minerals, dietary fibers, vitamins, saturated fatty acids and unsaturated fatty acids, has been mass cultured in some Asian countries and has been the focus of researchers in recent years.
Abstract: The edible seaweed Caulerpa lentillifera, a powerful natural food source that is rich in protein, minerals, dietary fibers, vitamins, saturated fatty acids and unsaturated fatty acids, has been mass cultured in some Asian countries and has been the focus of researchers in recent years. Here, the operational conditions of its culture, application in wastewater treatment, and bioactive components are summarized and comparatively analyzed. Based on previous studies, salinity, nutrient concentrations, irradiance and temperature are stress factors for algal growth. Moreover, dried Caulerpa lentillifera seaweed is efficient in the biosorption of heavy metals and cationic dyes in wastewater, and fresh seaweed can be introduced as a biofilter in aquaculture system treatment. In addition, among the rich bioactive compounds in Caulerpa lentillifera, the phenolic compounds show the potential ability for regulating glucose metabolism in vivo. Polysaccharides and oligosaccharides exhibit anticoagulant, immunomodulatory effects and cancer-preventing activity. Siphonaxanthin is a compound with attractive novel functions in cancer-preventing activity and lipogenesis-inhibiting effects. Furthermore, the antioxidant activity of siphonaxanthin extracted from Caulerpa lentillifera could be stronger than that of astaxanthin. This review offers an overview of studies of Caulerpa lentillifera addressing various aspects including cultivation, wastewater treatment and biological active components which may provide valuable information for the cultivation and utilization of this green alga.

26 citations

Journal ArticleDOI
TL;DR: A facile vapor reduction method is demonstrated for the treatment of MnO x with hydrazine hydrate to improve the electronic conductivity and opens a new way for oxygen vacancy introduction and structural modification of metal oxide as high-performance materials for energy storage applications.
Abstract: The poor electronic conductivity of MnO x severely limits the practical application as high-performance electrode materials for faradaic pseudocapacitors. Herein, a facile vapor reduction method is demonstrated for the treatment of MnO x with hydrazine hydrate (HH) to improve the electronic conductivity. The HH vapor treatment without annealing process not only introduces oxygen vacancies to form oxygen-deficient MnO x, but also leads to obvious structural transformation from highly aggregated and poorly crystallized MnO x nanorobs and nanoparticles into uniformly orientated and highly crystallized MnO x nanosheets via the Ostwald ripening process. Compared with pristine MnO x on carbon fiber (CF-MnO x), the reduced CF-MnO x exhibits a highly improved specific capacitance of 1130 mF cm-1 (434 F g-1) with excellent rate capability and cycling stability. Our results have shown that the moderate concentration of oxygen vacancies and highly uniform orientation of reduced MnO x endow the electrode with a fast electron and ion transport, respectively. Moreover, a flexible fiber asymmetric supercapacitor (ASC) device with high-energy and power density based on the as-prepared reduced CF-MnO x as a cathode and electrochemically activated graphene oxide on carbon fiber (CF-ArGO) as an anode is fabricated. The MnO x//ArGO ASC device delivers a high volumetric capacitance of 1.9 F cm-3, a maximum energy density of 1.06 mWh cm-3, and a volumetric power density of 371.3 mW cm-3. The present work opens a new way for oxygen vacancy introduction and structural modification of metal oxide as high-performance materials for energy storage applications.

26 citations

Journal ArticleDOI
TL;DR: A formal [4 + 2] annulation through N-heterocyclic carbene (NHC) catalysis for highly enantioselective synthesis of intriguing spirocarbocyclIC oxindoles in the presence of Lewis acids is disclosed.
Abstract: The ubiquitous structure of all-carbospirocyclic oxindoles makes the development of new methods for their enantioselective and stereoselective synthesis a significant ongoing challenge. Herein, we disclose a formal [4 + 2] annulation through N-heterocyclic carbene (NHC) catalysis for highly enantioselective synthesis of intriguing spirocarbocyclic oxindoles in the presence of Lewis acids. This protocol features good substrates tolerance, good yields, and excellent diastereoselectivities and enantioselectivities (up to 97% ee) under mild conditions.

26 citations

Journal ArticleDOI
TL;DR: An efficient and facile Au(I)/Ag(I)-catalyzed cascade method has been developed for one-pot synthesis of the complex polycyclic heterocycles benzo[4,5]imidazo[1,2-c]pyrrolo[1-2-a]quinazolinone derivatives through treatment of the substituted 2-(1H-benzo[d], 2-yl)anilines.
Abstract: An efficient and facile Au(I)/Ag(I)-catalyzed cascade method has been developed for one-pot synthesis of the complex polycyclic heterocycles benzo[4,5]imidazo[1,2-c]pyrrolo[1,2-a]quinazolinone derivatives through treatment of the substituted 2-(1H-benzo[d]imidazol-2-yl)anilines with 4-pentynoic acid or 5-hexynoic acid. The strategy features a Au(I)/Ag(I)-catalyzed one-pot cascade process involving the formation of three new C–N bonds in high yields, and with broad a substrate scope.

26 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations