scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrated that the N297S mutation altered the hydrogen-bonding network mediated by a water molecule between the B'-C loop and the I helix and thus a shift of the B' helix/B-C loop region, whereas the A481T mutation triggered the conformational changes of its adjacent residues including Phe209 and Phe280 via an indirect manner to affect the substrate binding.
Abstract: Human cytochrome P450 2A6 is the major enzyme to catalyze coumarin 7-hydroxylation, and this enzyme also plays an important role in the metabolism of nicotine and other tobacco-specific compounds. Recent experimental data showed that the N297S and A481T mutants of P450 2A6 decreased the catalytic activity toward coumarin by about 4-fold and 10-fold, respectively. These two mutants also had about 30-fold decrease in binding affinity for coumarin when compared to its wild type. At present, however, how the mutations affect the enzymatic activity and/or the substrate binding remains unclear. In this study, a combination of molecular docking and molecular dynamics (MD) simulation was employed to investigate the above question. Our results demonstrated that the N297S mutation altered the hydrogen-bonding network mediated by a water molecule between the B'-C loop and the I helix and thus a shift of the B' helix/B'-C loop region, whereas the A481T mutation triggered the conformational changes of its adjacent residues including Phe209 and Phe280 via an indirect manner to affect the substrate binding. However, the mutations did not significantly alter the substrate binding orientation because the only polar residue 297 in the active site provided the hydrogen-bonding donor to guide the binding of coumarin. Both mutations perturbed the shape of "Phe-cluster" in the active site and thus weakened the interactions with coumarin. The calculated binding free energies were in agreement with the relative potency of the experimental binding affinities.

24 citations

Journal ArticleDOI
TL;DR: It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF- KakB activation, which was positively correlated with the level ofproteinuria.

24 citations

Journal ArticleDOI
TL;DR: A dual-wavelength laser with a ceramic Nd:Y AG as laser material and Cr:YAG as frequency selector and saturable absorber is reported, which is possible to be used as a new source to generate terahertz radiation.
Abstract: We reported a dual-wavelength laser with a ceramic Nd:YAG as laser material and Cr:YAG as frequency selector and saturable absorber. Continuous-wave output power was achieved to be as high as 6.19 W at 1052 nm. With Cr:YAG, the laser has dual-wavelength at 1052 and 1064 nm. The shortest pulse width, maximum pulse energy and highest peak power were 4.8 ns, 103.2 µJ, and 21.5 kW. This pulsed laser is possible to be used as a new source to generate terahertz radiation.

23 citations

Journal ArticleDOI
TL;DR: This review summarizes sixteen examples of the second-generation of HCV NS3/4A inhibitors, mainly focusing on the clinical application, structure development, structure-activity relationship (SAR) and their synthesis.
Abstract: Hepatitis C is a current pandemic liver disease caused by the hepatitis C virus (HCV) with high morbidity and mortality Recently, the direct-acting antiviral agents (DAAs) targeting HCV NS3/4A, NS5A and NS5B have become the most effective therapies against HCV infection in the clinical treatment Among them, the second-generation of NS3/4A inhibitors have emerged as the mainstay of the DAA therapies, which are derived from the peptide substrate of NS3/4A protease and modified with various tailor-made amino acids in order to achieve high sustained virologic response (SVR) against HCV This review summarizes sixteen examples of the second-generation of HCV NS3/4A inhibitors, mainly focusing on the clinical application, structure development, structure-activity relationship (SAR) and their synthesis

23 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate an unconventional passive cooling process in a system with high light absorption of approximately 99.3%, where the main component of the system is an aerogel with a unique conical structure that performs thermal transfer.

23 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations