scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , a UV pulse laser is used to controllably construct ultra-small Ru nanoparticles on defects-rich Al2O3−x−L in situ grown on Al foil (Ru•Al2O 3−x‐L) for effective photothermal CO2 methanation.
Abstract: The CO2 methanation is an important component of the “power to gas” strategy, and the Ru‐Al2O3 catalyst is considered to be a state‐of‐the‐art catalyst for this reaction. Conventional Ru‐Al2O3 is prepared by wet impregnation. Due to weak interactions between Ru and the Al2O3, construction of a controllable interface between the metal and the substrate is still challenging. In this work, a UV pulse laser is used to controllably construct ultra‐small Ru nanoparticles on defects‐rich Al2O3‐x‐L in situ grown on Al foil (Ru‐Al2O3‐x‐L) for effective photothermal CO2 methanation. The catkin‐like fluff Al2O3‐x‐L efficiently traps light to ensure the light adsorption of Ru‐Al2O3‐x‐L. The defects in Al2O3‐x‐L efficiently anchors Ru. A Strong‐Metal‐Support‐Interaction (SMSI) effect is constructed between the ultra‐small Ru nanoparticles and the Al2O3‐x‐L. The Ru‐Al2O3‐x‐L exhibits remarkable photothermal catalytic performance (CH4 yield of 12.35 mol gRu−1 h−1) in the closed batch system. Then an innovative flow reactor is established based on the one‐piece Ru‐Al2O3‐x‐L microchannel catalyst. Thanks to local pressure on the edge of the microchannels, the CH4 yield is further enhanced to 14.04 mol gRu−1 h−1. Finally, an outdoor setup demonstrates the feasibility of photothermal CO2 methanation (CH4 yield of 18.00 mmol min−1). This work provides novel perspectives for the construction of multi‐level micro/nanostructures integrated catalysts for photothermal CO2 methanation.

20 citations

Journal ArticleDOI
TL;DR: The asymmetric synthesis of 3-indolylglycine derivatives was achieved by an oxidative heterocoupling reaction for the selective C-3 functionalization of unprotected indoles with the chiral equivalent of a nucleophilic glycine nickel(II) complex with high diastereoselectivities.

20 citations

Journal ArticleDOI
TL;DR: In this paper , the nitrogen reduction reaction (NRR) performance of a nitrogen-phosphorus-doped porous carbon matrix (CrP/NPC) was investigated.
Abstract: The resource recovery of heavy metals from effluent has significant environmental implications and potential commercial value. Chromium phosphide nanoparticles embedded in a nitrogen-/phosphorus-doped porous carbon matrix (CrP/NPC) are synthesized via a consecutive Cr6+ leachate treatment and resource recovery process. Electrochemical testing shows that CrP/NPC shows excellent nitrogen reduction reaction (NRR) performance, which yields the highest NH3 production rate of 22.56 μg h−1 mg−1cat. and Faradaic efficiency (16.37%) at −0.5 V versus the reversible hydrogen electrode in a 0.05 M Na2SO4 aqueous solution, as well as robust catalytic stability. The isotopic experiments using 15N2 as a nitrogen source confirm that the detected NH3 is derived from the NRR process. Finally, density functional theory (DFT) calculations show that the electron deficiency environment of the Cr site can significantly reduce the barrier of the NRR process and promote the formation of intermediate species.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a one-step hydrofluoric acid-free hydrothermal-etching technique is demonstrated for the preparation of porous silicon with vertical holes, and a formation mechanism has been proposed on the basis of experimental observations.
Abstract: A one-step hydrofluoric-acid-free hydrothermal-etching technique is demonstrated for the preparation of porous silicon with vertical holes. This method demonstrates a “green” chemical approach for etching a silicon wafer or the preparation of bismuth-silicon nanostructures without toxic acid or applying an external voltage. By controlling the heating temperature (<180°C) and time, nanoscale vertically holed porous silicon has been created. A formation mechanism has been proposed on the basis of experimental observations.

20 citations

Journal ArticleDOI
TL;DR: The mandibular posterior tooth-alveolar bone complex morphology may be affected by growth patterns, and significant positive correlations were found between the FHI and the inclination of the molars, the thickness of the cortical bone, and the height of theMandibular bone.
Abstract: Objective: To investigate the relationship between growth patterns and mandibular posterior tooth-alveolar bone complex morphology in a Chinese population with normal occlusion. Methods: Forty-five patients with normal occlusion (23 males, 22 females) were included in this study. Among these patients, 20 displayed the vertical growth pattern, and 20 had the horizontal growth pattern, while the remaining patients displayed the average growth pattern. All of the patients underwent dental cone beam computed tomography (CBCT), which included the region of the mandibular posterior teeth and the alveolar. A linear regression analysis and a correlation analysis between the facial height index (FHI) and the alveolar bone morphology were performed. Results: The inclination of the molars, the thickness of the cortical bone, and the height of the mandibular bone differed significantly between patients with the horizontal growth pattern and those with the vertical growth pattern (P<0.05). Significant positive correlations were found between: the FHI and the inclination of the molars; the FHI and the thickness of the cortical bone; and the FHI and the height of the mandibular bone. Conclusions: The mandibular posterior tooth-alveolar bone complex morphology may be affected by growth patterns.

19 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations