scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the magnetization, Raman spectroscopy, and ferroelectricity of multiferroic GdMn2O5 as a function of temperature and magnetic field are investigated.
Abstract: The magnetization, Raman spectroscopy, and ferroelectricity of multiferroic GdMn2O5 as a function of temperature and magnetic field are investigated. The complicated magnetic transitions at low temperatures are featured with anomalous Raman mode shifts, dielectric response, and ferroelectricity generation, indicating the significant spin–phonon coupling. It is argued that this coupling is possibly responsible for the electrical polarization generation associated with the incommensurate–commensurate transition.

19 citations

Journal ArticleDOI
Chunhua Wang1, Chao Wang1, Jiaoyan Qiu1, Jianwei Gao1, Hong Liu1, Yu Zhang1, Lin Han1 
TL;DR: In this article, a space-encoding microfluidic biochip was developed for high-throughput, rapid, sensitive, simultaneous quantitative detection of SARS-CoV-2 antigen proteins and IgG/IgM antibodies in serum.
Abstract: COVID-19 is now a severe threat to global health. Facing this pandemic, we developed a space-encoding microfluidic biochip for high-throughput, rapid, sensitive, simultaneous quantitative detection of SARS-CoV-2 antigen proteins and IgG/IgM antibodies in serum. The proposed immunoassay biochip integrates the advantages of graphene oxide quantum dots (GOQDs) and microfluidic chip and is capable of conducting multiple SARS-CoV-2 antigens or IgG/IgM antibodies of 60 serum samples simultaneously with only 2 μL sample volume of each patient. Fluorescence intensity of antigens and IgG antibody detection at emission wavelength of ~680 nm was used to quantify the target concentration at excitation wavelength of 632 nm, and emission wavelength of ~519 nm was used during the detection of IgM antibodies at excitation wavelength of 488 nm. The method developed has a large linear quantification detection regime of 5 orders of magnitude, an ultralow detection limit of ~0.3 pg/mL under optimized conditions, and less than 10-min qualitative detection time. The proposed biosensing platform will not only greatly facilitate the rapid diagnosis of COVID-19 patients, but also provide a valuable screening approach for infected patients, medical therapy, and vaccine recipients.

19 citations

Journal ArticleDOI
TL;DR: In this paper, LiTaO3, LT wafers of different colors were prepared through chemical reduction of regular congruent LT wafer, and samples with different colors corresponding to different annealing temperatures were characterized by X-ray diffraction, Xray photoelectron spectroscopy and measurements of the Curie temperature and density.
Abstract: Lithium tantalate (LiTaO3, LT) wafers of different colors were prepared through chemical reduction of regular congruent LT wafers. Samples with different colors corresponding to different annealing temperatures were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and measurements of the Curie temperature and density. It was found that chemical reduction does not influence the basic LT structure. The Ta charge state change due to chemical reduction was found to be the main reason for the formation of black LT wafers.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the selective formation of nanosized cavities on barium titanate (BaTiO3) nanocubes through a simple acid etching route in hydrothermal environment is reported.
Abstract: We report here the selective formation of nanosized cavities on barium titanate (BaTiO3) nanocubes through a simple acid etching route in hydrothermal environment. Microstructural analysis reveals that the etching process is size dependent with small cavity preferentially formed on the nanocubes greater than a characteristic length of ∼60 nm. A dislocation assisted etching mechanism is proposed to account for the experimental observations and discussed on the basis of the classical dislocation theory. This simple method could be extended to other perovskites for fabricating novel and complex ferroelectric nanostructures.

19 citations

Journal ArticleDOI
TL;DR: Interestingly, compound 3m not only inhibited various phosphorylation and downstream signaling across different oncogenic forms in FGFR-overactivated cancer cells but also showed nanomolar level inhibition against several other NSCLC-related oncogene kinases, including RET, EGFR, EGfr/T790M/L858R, DDR2, and ALK.
Abstract: A novel series of pyridin-3-amine derivatives were designed, synthesized, and evaluated as multitargeted protein kinase inhibitors for the treatment of non-small cell lung cancer (NSCLC). Hit 1 was first disclosed by in silico screening against fibroblast growth factor receptors (FGFR), which was subsequently validated by in vitro experiments. The structure–activity relationship (SAR) of its analogues was then explored to afford novel FGFR inhibitors 2a–2p and 3a–3q. Among them, 3m showed potent inhibition against FGFR1, 2, and 3. Interestingly, compound 3m not only inhibited various phosphorylation and downstream signaling across different oncogenic forms in FGFR-overactivated cancer cells but also showed nanomolar level inhibition against several other NSCLC-related oncogene kinases, including RET, EGFR, EGFR/T790M/L858R, DDR2, and ALK. Finally, in vivo pharmacology evaluations of 3m showed significant antitumor activity (TGI = 66.1%) in NCI-H1581 NSCLC xenografts with a good pharmacokinetic profile.

19 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations