scispace - formally typeset
Search or ask a question
Author

Hong Liu

Other affiliations: Shanghai University, Guangzhou University, University of Jinan  ...read more
Bio: Hong Liu is an academic researcher from Shandong University. The author has contributed to research in topics: Medicine & Materials science. The author has an hindex of 100, co-authored 1905 publications receiving 57561 citations. Previous affiliations of Hong Liu include Shanghai University & Guangzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: The versatility, air-stability, operational simplicity, and operational simplicity of this protocol, in addition to the higher yields and shorter reaction time it provides, highlight the potential of using this method in large scale library synthesis involving carbon-heteroatom formation.
Abstract: A practical and promising protocol was developed for S-arylations of various thiols with different substituted aryl halides. The reactions were readily facilitated to afford desired thioethers under mild conditions in good to excellent yields. The versatility, air-stability, operational simplicity of this method, in addition to the higher yields and shorter reaction time it provides, highlight the potential of using this method in large scale library synthesis involving carbon-heteroatom formation.

63 citations

Journal ArticleDOI
01 Mar 2019-Fuel
TL;DR: In this paper, the detonation failure mechanism in CH4-O2 mixtures with diameters of 2.5, 4.5 and 7.5 mm was investigated in macro-and micro-scale channels.

62 citations

Journal ArticleDOI
Xiaohang Wang1, Yuanhua Sang1, D.G. Wang1, Shaozheng Ji1, Hong Liu1 
TL;DR: In this article, the authors synthesize two heterostructures constituted of SnO 2 nanoparticles deposited on TiO 2 nanobelt (snO 2 NP/TiO 2 NB) or on surface-coarsened TiO2 nanobelts (SnO 2 NPs/NiO 2 SNB) through a simple hydrothermal process.

62 citations

Journal ArticleDOI
TL;DR: This review article critically discusses examples of asymmetric synthesis of tailor-made α-amino acids via homologation of Ni(II) complexes of glycine and alanine Schiff bases, reported in the literature from 2013 through the end of 2016.
Abstract: This review article critically discusses examples of asymmetric synthesis of tailor-made α-amino acids via homologation of Ni(II) complexes of glycine and alanine Schiff bases, reported in the literature from 2013 through the end of 2016. Where it is possible, reaction mechanism and origin of the stereochemical outcome is discussed in detail. Special attention is given to various aspects of practicality and scalability of the reported methods. Among the most noticeable developments in this area are novel designs of axially chiral ligands, application of electro- and mechano-chemical (ball-milling) conditions, and development of dynamic kinetic resolution procedures.

62 citations

Journal ArticleDOI
TL;DR: In this article, two types of bio-wastes, Platanus fruit and willow catkins, were used to prepare hollow carbon micro-fibers, where their size and microstructure are dependent on the Platanus fibre fibers andwillow catkin fibers.
Abstract: Normally, structural details of the tissue of bio-waste affect the final properties of carbon materials. In this study, we selected two types of bio-wastes, Platanus fruit and willow catkins, to prepare hollow carbon micro-fibers, where their size and microstructure are dependent on the Platanus fruit fibers and willow catkin fibers. The electrode properties of the Platanus-derived hollow micro carbon fibers are much higher than those of the willow-derived micro carbon fibers, although carbonization and activation processes are the same for the two types of materials. It is found that the content of the organic-related elements, C, N, and S, and the content of inorganic ions, K or Na, are different. The high content of N and S induced a high doping concentration of the hollow carbon micro-fibers, which endows the Platanus-derived carbon materials with high conductivity, and the high content of inorganic elements causes a self-activation effect during the carbonization process and results in a special porous microstructure of the Platanus-derived carbon. Therefore, compared with the willow-derived hollow carbon micro-fibers, after carbonization and KOH activation, the hollow carbon micro-fibers derived from Platanus seeds possessed much higher supercapacitor electrode properties. After carbonization and activation under optimized conditions, the specific capacitance of the Platanus- and willow-derived hollow carbon micro-fibers are 304.65 F g−1 and 276.13 F g−1, respectively, at the current density of 0.5 A g−1, with a good rate capability and 88.5% and 81.05% capacity retention at 10 A g−1, respectively. The coin-type symmetric device of these two samples with 6 M KOH electrolyte exhibited a high specific capacitance of 286.5 and 267.5 F g−1, respectively, at 0.25 A g−1 (PFs 900, WFs 800), with an excellent cycling stability and 97.03% and 91.12% capacity retention after 10000 cycles, respectively. This work not only provided two types of promising supercapacitor carbon materials but also, most importantly, offered us clues for the design and synthesis of high-performance electrode materials using the knowledge gleaned from nature.

62 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations