scispace - formally typeset
Search or ask a question
Author

Hong Qi Zhang

Other affiliations: University of New South Wales
Bio: Hong Qi Zhang is an academic researcher from Hong Kong Baptist University. The author has contributed to research in topics: Electroacupuncture & Somatosensory system. The author has an hindex of 24, co-authored 51 publications receiving 1719 citations. Previous affiliations of Hong Qi Zhang include University of New South Wales.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.
Abstract: Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer-functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.

232 citations

Journal ArticleDOI
TL;DR: Curcumin derivative C1 is identified as a novel MTOR-independent activator of TFEB, which enhances autophagy and lysosome biogenesis in vitro and in vivo and is a potential therapeutic agent for the treatment of neurodegenerative diseases.
Abstract: Autophagy dysfunction is a common feature in neurodegenerative disorders characterized by accumulation of toxic protein aggregates. Increasing evidence has demonstrated that activation of TFEB (transcription factor EB), a master regulator of autophagy and lysosomal biogenesis, can ameliorate neurotoxicity and rescue neurodegeneration in animal models. Currently known TFEB activators are mainly inhibitors of MTOR (mechanistic target of rapamycin [serine/threonine kinase]), which, as a master regulator of cell growth and metabolism, is involved in a wide range of biological functions. Thus, the identification of TFEB modulators acting without inhibiting the MTOR pathway would be preferred and probably less deleterious to cells. In this study, a synthesized curcumin derivative termed C1 is identified as a novel MTOR-independent activator of TFEB. Compound C1 specifically binds to TFEB at the N terminus and promotes TFEB nuclear translocation without inhibiting MTOR activity. By activating TFEB, C1 enhances autophagy and lysosome biogenesis in vitro and in vivo. Collectively, compound C1 is an orally effective activator of TFEB and is a potential therapeutic agent for the treatment of neurodegenerative diseases.

133 citations

Journal ArticleDOI
TL;DR: In this article, SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD), and the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCAA53T inhibits autophagia in PC12 cells in a time-dependent manner.
Abstract: SNCA/α-synuclein and its rare mutations are considered as the culprit proteins in Parkinson disease (PD). Wild-type (WT) SNCA has been shown to impair macroautophagy in mammalian cells and in transgenic mice. In this study, we monitored the dynamic changes in autophagy process and confirmed that overexpression of both WT and SNCAA53T inhibits autophagy in PC12 cells in a time-dependent manner. Furthermore, we showed that SNCA binds to both cytosolic and nuclear high mobility group box 1 (HMGB1), impairs the cytosolic translocation of HMGB1, blocks HMGB1-BECN1 binding, and strengthens BECN1-BCL2 binding. Deregulation of these molecular events by SNCA overexpression leads to autophagy inhibition. Overexpression of BECN1 restores autophagy and promotes the clearance of SNCA. siRNA knockdown of Hmgb1 inhibits basal autophagy and abolishes the inhibitory effect of SNCA on autophagy while overexpression of HMGB1 restores autophagy. Corynoxine B, a natural autophagy inducer, restores the deficient cytosolic translocation of HMGB1 and autophagy in cells overexpressing SNCA, which may be attributed to its ability to block SNCA-HMGB1 interaction. Based on these findings, we propose that SNCA-induced impairment of autophagy occurs, in part, through HMGB1, which may provide a potential therapeutic target for PD.

113 citations

Journal ArticleDOI
TL;DR: Reductions in SII responsiveness in association with SI inactivation may be attributable to a loss of a background facilitatory influence rather than to a blockage of a component of peripheral input that comes over a putative serial path to SII via SI.
Abstract: 1. Responsiveness within the hand region of the second somatosensory area of cortex (SII) was investigated in the marmoset monkey (Callithrix jacchus) in association with cooling-induced, reversible inactivation of the primary somatosensory area, SI. The aims were to determine whether thalamocortical systems in this primate species are organized according to a serial scheme in which tactile information is conveyed from the thalamus to SI and thence to SII as the next hierarchical level of processing and to establish whether primates are fundamentally different, in this respect, from mammals in which tactile information is conveyed in parallel from the thalamus to both SI and SII. 2. Inactivation of the SI had area was achieved when the temperature at the face of the silver cooling block over this SI region was lowered to 50%. 4. Tactile responsiveness was examined quantitatively in 47 individual SII neurons of different functional classes before, during, and after the inactivation of SI. Controlled tactile stimuli consisted of trains of sinusoidal vibration or rectangular pulses delivered to the glabrous or hairy skin of the hand. 5. Thirteen of the 47 SII neurons (28%) were unaffected in their response levels in association with SI inactivation. The remaining 34 SII neurons underwent some reduction in responsiveness, but in only 6% (3/47) was responsiveness abolished by SI inactivation. As the same range of functional classes of tactile neurons were represented among the affected and unaffected SII neurons, there was no evidence for a differential susceptibility among SII tactile neurons to the effect of SI inactivation. 6. Where reductions in amplitude of the SII-evoked potential or in response levels of SII neurons were observed, the effects were not attributable to direct spread of cooling from SI to the SII hand area as there was no cooling-induced prolongation of either the evoked potential or spike waveform in SII, an effect that is known to precede cooling-induced reductions in responsiveness. 7. These lines of evidence indicate that reductions in SII responsiveness in association with SI inactivation may be attributable to a loss of a background facilitatory influence rather than to a blockage of a component of peripheral input that comes over a putative serial path to SII via SI. First, as SI was cooled, there was a progressive increase in latency and time course of the SI responses before their disappearance, but no comparable delay in the SII responses as might be expected if SI were placed earlier than SII in a strict hierarchical scheme of thalamocortical processing. Second, SI inactivation failed to bring about a tightening in the phase-locking of SII responses to vibrotactile stimuli as might have been expected if the inputs to the SII neurons come via both a direct path from the thalamus and an indirect intracortical path via SI. Blockage of the indirect intracortical pathway through SI might be expected to reduce temporal dispersion in the input to SII neurons and result in an improvement in phase-locking in the SII responses to skin vibration. Third, the background activity of some SII neurons was reduced during SI inactivation along with the reduction in their responses to tactile stimulation.

102 citations

Journal ArticleDOI
TL;DR: There is a similar pattern of autonomic changes in response to auricular acupuncture, with variable intensity depending on the area of stimulation, which does not support the theory of a highly specific functional map in the ear.
Abstract: Auricular acupuncture has been used for various autonomic disorders in clinical practice. It has been theorized that different auricular areas have distinct influence on autonomic functions. The present study aims to examine the effects of acupuncture stimulation at different auricular areas on cardiovascular and gastric responses. In male Sprague-Dawley rats anesthetized with pentobarbital sodium, five auricular areas, which were located at the apex of the helix (A(1)), the middle of the helix (A(2)), the tail of the helix (A(3)), the inferior concha (A(4)) and the middle of the antihelix (A(5)), had been selected for stimulation with manual acupuncture (MA) and different parameters of electroacupuncture (EA). A mild depressor response (6%-12% decrease from baseline) was evoked from A(1), A(3) and A(4) by MA and from all five areas by EA (100 Hz-1 mA). The biggest depressor response (-18.4+/-3.1 mmHg, p<0.001) was evoked from A(4). A small bradycardia was evoked by MA from A(4) and by EA at A(3), A(4) and A(5.) Increase in intragastric pressure (8-14 mmH(2)O) was evoked by MA from A(1), A(3) and A(4) and by EA at A(2.) These results show that similar patterns of cardiovascular and gastric responses could be evoked by stimulation of different areas of the auricle. The present results do not support the theory of a highly specific functional map in the ear. Rather, there is a similar pattern of autonomic changes in response to auricular acupuncture, with variable intensity depending on the area of stimulation.

89 citations


Cited by
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: A global account of mechanisms involved in the induction of pain is provided, including neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres.

1,752 citations

Journal ArticleDOI
27 Sep 2017-Neuron
TL;DR: Evidence supports a conceptual shift in the mechanisms of neurovascular coupling, from a unidimensional process involving neuronal-astrocytic signaling to local blood vessels to a multidimensional one in which mediators released from multiple cells engage distinct signaling pathways and effector systems across the entire cerebrovascular network in a highly orchestrated manner.

1,300 citations

Journal ArticleDOI
TL;DR: This Review discusses challenges of clinical translation of therapeutic aptamers, highlighting recent clinical developments and technological advances that have revived the impetus for this promising class of therapeutics.
Abstract: Nucleic acid aptamers, often termed 'chemical antibodies', are functionally comparable to traditional antibodies, but offer several advantages, including their relatively small physical size, flexible structure, quick chemical production, versatile chemical modification, high stability and lack of immunogenicity. In addition, many aptamers are internalized upon binding to cellular receptors, making them useful targeted delivery agents for small interfering RNAs (siRNAs), microRNAs and conventional drugs. However, several crucial factors have delayed the clinical translation of therapeutic aptamers, such as their inherent physicochemical characteristics and lack of safety data. This Review discusses these challenges, highlighting recent clinical developments and technological advances that have revived the impetus for this promising class of therapeutics.

1,207 citations

Journal ArticleDOI
TL;DR: The literature on the relationship among natural products, traditional medicines, and modern medicine is reviewed, and the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery are explored.
Abstract: Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

1,153 citations