scispace - formally typeset
Search or ask a question
Author

Hong-Tao Zhu

Bio: Hong-Tao Zhu is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Panax notoginseng & Camellia sinensis. The author has an hindex of 18, co-authored 94 publications receiving 948 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, HPLC analyses on saponin composition of processed notoginseng were conducted, which revealed that, during the steaming process, the five main ginsenosides (ginsenosides Rg(1), Rb-1, Rd, and Re, and notogsenoside R-1) decreased gradually and some other new saponins were formed.

67 citations

Journal ArticleDOI
TL;DR: The geographical distribution of tea plants and the chemical constituents reported from the genus Camellia section Thea and some tea products that have ever been studied between 1970 and 2018 have been summarized, taking species as the main hint, and the main biological activities are also discussed.
Abstract: Tea, as one of the most popular beverages with various bioactivities, is commonly produced from the fresh leaves of two widely cultivated tea plants, Camellia sinensis and C. sinensis var. assamica. Both plants belong to the genus Camellia section Thea, which was considered to have 12 species and 6 varieties according to Min's taxonomic system. Most species, except the cultivated species, are known as wild tea plants and have been exploited and utilized to produce tea by the local people of its growing areas. Thus far, six species and varieties have been phytochemically studied, leading to the identification of 398 compounds, including hydrolyzable tannins, flavan-3-ols, flavonoids, terpenoids, alkaloids, and other phenolic and related compounds. Various beneficial health effects were reported for tea and its components, involving antioxidant, antitumor, antimutagenic, antidiabetic, hypolipidemic, anti-inflammatory, antimicrobial, antiviral, antifungal, neuroprotective, hepatoprotective, etc. In this review, the geographical distribution of tea plants and the chemical constituents (1-398) reported from the genus Camellia section Thea and some tea products (green, black, oolong, and pu-erh tea) that have ever been studied between 1970 and 2018 have been summarized, taking species as the main hint, and the main biological activities are also discussed.

61 citations

Journal ArticleDOI
TL;DR: Thirty-nine important medicinal and edible Terminalia species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.
Abstract: Terminalia Linn, a genus of mostly medium or large trees in the family Combretaceae with about 250 species in the world, is distributed mainly in southern Asia, Himalayas, Madagascar, Australia, and the tropical and subtropical regions of Africa. Many species are used widely in many traditional medicinal systems, e.g., traditional Chinese medicine, Tibetan medicine, and Indian Ayurvedic medicine practices. So far, about 39 species have been phytochemically studied, which led to the identification of 368 compounds, including terpenoids, tannins, flavonoids, phenylpropanoids, simple phenolics and so on. Some of the isolates showed various bioactivities, in vitro or in vivo, such as antitumor, anti HIV-1, antifungal, antimicrobial, antimalarial, antioxidant, diarrhea and analgesic. This review covers research articles from 1934 to 2018, retrieved from SciFinder, Wikipedia, Google Scholar, Chinese Knowledge Network and Baidu Scholar by using "Terminalia" as the search term ("all fields") with no specific time frame setting for the search. Thirty-nine important medicinal and edible Terminalia species were selected and summarized on their geographical distribution, traditional uses, phytochemistry and related pharmacological activities.

44 citations

Journal ArticleDOI
TL;DR: Nineteen new highly oxygenated norbisabolane sesquiterpenoids, phyllanthacidoid acid methyl ester, and C-T were isolated from Phyllanthus acidus Skeels, and the results indicated that the 5-ketal group and sugar moieties had contributions to the selectivity of HBsAg and HBeAg.
Abstract: Nineteen new highly oxygenated norbisabolane sesquiterpenoids, phyllanthacidoid acid methyl ester (1), and C-T (4-21), were isolated from Phyllanthus acidus Skeels, together with two known ones, phyllanthusols A (2) and B (3), whose sugar moiety was revised as glucosamine-N-acetate, rather than the previously assigned mannosamine-N-acetate. Compounds 2 and 3 were renamed respectively as phyllanthacidoids A (2) and B (3) to avoid confusion. All of the isolates except for 1 are glycosides, whose saccharide moieties possess a pentaoxy cyclohexane (scyllo quercitol) connecting with glucosamine-N-acetate or glucosyl moieties, which are first examples in natural products. Phyllanthacidoids N-R (15-19) with 8R configurations and/or 5,8-diketal skeleton, are unprecedented structures among norbisabolane sesquiterpenoids. Phyllanthacidoids S (20) and T (21) have the unusual tricyclo [3.1.1.1] oxygen bridge skeleton formed by a diketal system, of which the relative configurations of the aliphatic chain were assigned on the basis of heteronuclear coupling constants. The absolute configurations of compounds (1-21) were established by means of calculated electronic circular dichroism (ECD) and coupling constants. Compounds 1-5, 7-9, 10, and 14 displayed potential anti-hepatitis B virus (HBV) activities, with IC50 values of 0.8-36 mu M against HBV surface antigen (HBsAg) and HBV excreted antigen (HBeAg), and the results indicated that the S-ketal group and sugar moieties had contributions to the selectivity of HBsAg and HBeAg.

43 citations

Journal ArticleDOI
TL;DR: 18 new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots.
Abstract: The roots of Panax notoginseng, an important Chinese medicinal plant, have been used traditionally in both the raw and processed forms, due to the different chemical constituents and bioactivities found. Thirty-eight dammarane-type triterpenoid saponins were isolated from the steam-processed roots of P. notoginseng, including 18 new substances, namely, notoginsenosides SP1-SP18 (1-18). The structures of 1-18 were determined on the basis of spectroscopic analysis and acidic hydrolysis. The absolute configuration of the hydroxy group at C-24 in 1-4, 19, and 20 was determined in each case by Mo-2(AcO)(4)-induced circular dichroism. The new compounds were found to feature a diversity of highly oxygenated side chains, formed by hydrolysis of the C-20 sugar moiety followed by dehydration, dehydrogenation, epoxidation, hydroxylation, or methoxylation of the main saponins in the raw roots. The new saponins 1, 2, 6-8, 14, and 17 and the known compounds 20-27 showed promoting effects on the differentiation of PC12 cells, at a concentration of 10 mu M.

40 citations


Cited by
More filters
01 Dec 2007

1,121 citations

Journal ArticleDOI
TL;DR: This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications.
Abstract: Phenolic compounds as well as flavonoids are well-known as antioxidant and many other important bioactive agents that have long been interested due to their benefits for human health, curing and preventing many diseases. This review attempts to demonstrate an overview of flavonoids and other phenolic compounds as the interesting alternative sources for pharmaceutical and medicinal applications. The examples of these phytochemicals from several medicinal plants are also illustrated, and their potential applications in pharmaceutical and medical aspects, especially for health promoting e.g., antioxidant effects, antibacterial effect, anti-cancer effect, cardioprotective effects, immune system promoting and anti-inflammatory effects, skin protective effect from UV radiation and so forth are highlighted.

947 citations

Journal ArticleDOI
TL;DR: This work was supported by the Foundation for Science and Technology (FCT), Portugal (projects PTDC/QUI-QUI/113687/2009 and PEst-C/QUI/UI0081/2013) and SFRH/BD/61262/2009.
Abstract: This work was supported by the Foundation for Science and Technology (FCT), Portugal (projects PTDC/QUI-QUI/113687/2009 and PEst-C/QUI/UI0081/2013). A.G. (SFRH/BD/43531/2008) and M.J.M. (SFRH/BD/61262/2009) thank FCT for grants.

514 citations

Journal ArticleDOI
TL;DR: The concept of endophytism is discussed, looking into the latest insights related to the multifarious interactions beneficial for the host plant and exploring the importance of these associations in agriculture and the environment and in other vital aspects such as human health.
Abstract: Microbial endophytes are present in all known plant species. The ability to enter and thrive in the plant tissues makes endophytes unique, showing multidimensional interactions within the host plant. Several vital activities of the host plant are known to be influenced by the presence of endophytes. They can promote plant growth, elicit defense response against pathogen attack, and can act as remediators of abiotic stresses. To date, most of the research has been done assuming that the interaction of endophytes with the host plant is similar to the plant growth-promoting (PGP) microbes present in the rhizosphere. However, a new appreciation of the difference of the rhizosphere environment from that of internal plant tissues is gaining attention. It would be interesting to explore the impact of endosymbionts on the host's gene expression, metabolism, and other physiological aspects essential in conferring resistance against biotic and abiotic stresses. A more intriguing and inexplicable issue with many endophytes that has to be critically evaluated is their ability to produce host metabolites, which can be harnessed on a large scale for potential use in diverse areas. In this review, we discuss the concept of endophytism, looking into the latest insights related to the multifarious interactions beneficial for the host plant and exploring the importance of these associations in agriculture and the environment and in other vital aspects such as human health.

354 citations