scispace - formally typeset
Search or ask a question
Author

Hong Zhou

Bio: Hong Zhou is an academic researcher from Xidian University. The author has contributed to research in topics: Schottky diode & Breakdown voltage. The author has an hindex of 24, co-authored 121 publications receiving 2577 citations. Previous affiliations of Hong Zhou include University of California, Berkeley & Purdue University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-dimensional steep-slope MOSFET with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack is presented.
Abstract: The so-called Boltzmann tyranny defines the fundamental thermionic limit of the subthreshold slope of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV dec-1 at room temperature and therefore precludes lowering of the supply voltage and overall power consumption 1,2 . Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier 3 . Meanwhile, two-dimensional semiconductors such as atomically thin transition-metal dichalcogenides, due to their low dielectric constant and ease of integration into a junctionless transistor topology, offer enhanced electrostatic control of the channel 4-12 . Here, we combine these two advantages and demonstrate a molybdenum disulfide (MoS2) two-dimensional steep-slope transistor with a ferroelectric hafnium zirconium oxide layer in the gate dielectric stack. This device exhibits excellent performance in both on and off states, with a maximum drain current of 510 μA μm-1 and a sub-thermionic subthreshold slope, and is essentially hysteresis-free. Negative differential resistance was observed at room temperature in the MoS2 negative-capacitance FETs as the result of negative capacitance due to the negative drain-induced barrier lowering. A high on-current-induced self-heating effect was also observed and studied.

382 citations

Journal ArticleDOI
Hong Zhou1, Mengwei Si1, Sami Alghamdi1, Gang Qiu1, Lingming Yang1, Peide D. Ye1 
TL;DR: In this article, the authors report on high performance depletion/enhancement-mode GOOI field effect transistors (FETs) with record high drain currents of 600/450 mA/mm, which is nearly one order of magnitude higher than any other reported drain currents.
Abstract: In this letter, we report on high-performance depletion/enhancement-mode $\beta $ -Ga2O3 on insulator (GOOI) field-effect transistors (FETs) with record high drain currents ( $\text{I}_{\mathrm {\sf D}}$ ) of 600/450 mA/mm, which are nearly one order of magnitude higher than any other reported $\text{I}_{\mathrm {\sf D}}$ values. The threshold voltage ( $\text{V}_{\mathrm {\sf T}}$ ) can be modulated by varying the thickness of the $\beta $ -Ga2O3 films and the E-mode GOOI FET can be simply achieved by shrinking the $\beta $ -Ga2O3 film thickness. Benefiting from the good interface between $\beta $ -Ga2O3 and SiO2 and wide bandgap of $\beta $ -Ga2O3, a negligible transfer characteristic hysteresis, high $\text{I}_{\mathrm {\sf D}}$ ON/OFF ratio of $10^{10}$ , and low subthreshold swing of 140 mV/decade for a 300-nm-thick SiO2 are observed. E-mode GOOI FET with source to drain spacing of 0.9- $\sf \mu \text{m}$ demonstrates a breakdown voltage of 185 V and an average electric field (E) of 2 MV/cm, showing the great promise of GOOI FET for future power devices.

236 citations

Journal ArticleDOI
TL;DR: A field-effect MoS2 transistor with a negative capacitor in its gate shows stable, hysteresis-free performance characterized by a sub-thermionic sub-threshold slope.
Abstract: The so-called Boltzmann Tyranny defines the fundamental thermionic limit of the subthreshold slope (SS) of a metal-oxide-semiconductor field-effect transistor (MOSFET) at 60 mV/dec at room temperature and, therefore, precludes the lowering of the supply voltage and the overall power consumption. Adding a ferroelectric negative capacitor to the gate stack of a MOSFET may offer a promising solution to bypassing this fundamental barrier. Meanwhile, two-dimensional (2D) semiconductors, such as atomically thin transition metal dichalcogenides (TMDs) due to their low dielectric constant, and ease of integration in a junctionless transistor topology, offer enhanced electrostatic control of the channel. Here, we combine these two advantages and demonstrate for the first time a molybdenum disulfide (MoS2) 2D steep slope transistor with a ferroelectric hafnium zirconium oxide layer (HZO) in the gate dielectric stack. This device exhibits excellent performance in both on- and off-states, with maximum drain current of 510 {\mu}A/{\mu}m, sub-thermionic subthreshold slope and is essentially hysteresis-free. Negative differential resistance (NDR) was observed at room temperature in the MoS2 negative capacitance field-effect-transistors (NC-FETs) as the result of negative capacitance due to the negative drain-induced-barrier-lowering (DIBL). High on-current induced self-heating effect was also observed and studied.

188 citations

Journal ArticleDOI
28 Sep 2017-ACS Nano
TL;DR: The results suggest that crystal selenium as a 2D form of a 1D van der Waals solid opens up the possibility to explore device applications, and is suggested to be a promising material candidate for future optoelectronic applications.
Abstract: Selenium has attracted intensive attention as a promising material candidate for future optoelectronic applications However, selenium has a strong tendency to grow into nanowire forms due to its anisotropic atomic structure, which has largely hindered the exploration of its potential applications In this work, using a physical vapor deposition method, we have demonstrated the synthesis of large-size, high-quality 2D selenium nanosheets, the minimum thickness of which could be as thin as 5 nm The Se nanosheet exhibits a strong in-plane anisotropic property, which is determined by angle-resolved Raman spectroscopy Back-gating field-effect transistors based on a Se nanosheet exhibit p-type transport behaviors with on-state current density around 20 mA/mm at Vds = 3 V Four-terminal field-effect devices are also fabricated to evaluate the intrinsic hole mobility of the selenium nanosheet, and the value is determined to be 026 cm2 V–1 s–1 at 300 K The selenium nanosheet phototransistors show an excellent

179 citations

Journal ArticleDOI
TL;DR: In this paper, a depletion/enhancement-mode β-Ga2O3 on insulator field effect transistors can achieve a record high drain current density of 1.5/1.0
Abstract: We have demonstrated that depletion/enhancement-mode β-Ga2O3 on insulator field-effect transistors can achieve a record high drain current density of 1.5/1.0 A/mm by utilizing a highly doped β-Ga2O3 nano-membrane as the channel. β-Ga2O3 on insulator field-effect transistor (GOOI FET) shows a high on/off ratio of 1010 and low subthreshold slope of 150 mV/dec even with 300 nm thick SiO2. The enhancement-mode GOOI FET is achieved through surface depletion. An ultra-fast, high resolution thermo-reflectance imaging technique is applied to study the self-heating effect by directly measuring the local surface temperature. High drain current, low Rc, and wide bandgap make the β-Ga2O3 on insulator field-effect transistor a promising candidate for future power electronics applications.

153 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed in this article.
Abstract: Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (e) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

1,535 citations

Journal ArticleDOI
01 Sep 2019-Nature
TL;DR: The opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems are reviewed, and the prospects for computational and non-computational applications are considered.
Abstract: The development of silicon semiconductor technology has produced breakthroughs in electronics—from the microprocessor in the late 1960s to early 1970s, to automation, computers and smartphones—by downscaling the physical size of devices and wires to the nanometre regime. Now, graphene and related two-dimensional (2D) materials offer prospects of unprecedented advances in device performance at the atomic limit, and a synergistic combination of 2D materials with silicon chips promises a heterogeneous platform to deliver massively enhanced potential based on silicon technology. Integration is achieved via three-dimensional monolithic construction of multifunctional high-rise 2D silicon chips, enabling enhanced performance by exploiting the vertical direction and the functional diversification of the silicon platform for applications in opto-electronics and sensing. Here we review the opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems, and also consider the prospects for computational and non-computational applications. Progress in integrating atomically thin two-dimensional materials with silicon-based technology is reviewed, together with the associated opportunities and challenges, and a roadmap for future applications is presented.

804 citations

Journal ArticleDOI
TL;DR: The UWBG semiconductor materials, such as high Al‐content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near‐term possibility.
Abstract: J. Y. Tsao,* S. Chowdhury, M. A. Hollis,* D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar,* S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons

785 citations

Journal ArticleDOI
TL;DR: A review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented in this paper, where a brief insight into the detection mechanisms of 2D material photodeterceptors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photoderectors is provided.
Abstract: 2D material based photodetectors have attracted many research projects due to their unique structures and excellent electronic and optoelectronic properties. These 2D materials, including semimetallic graphene, semiconducting black phosphorus, transition metal dichalcogenides, insulating hexagonal boron nitride, and their various heterostructures, show a wide distribution in bandgap values. To date, hundreds of photodetectors based on 2D materials have been reported. Here, a review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented. First, a brief insight into the detection mechanisms of 2D material photodetectors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photodetectors is provided. Then, the recent progress on 2D material based photodetectors is reviewed. Particularly, the excellent performances such as broadband spectrum detection, ultrahigh photoresponsivity and sensitivity, fast response speed and high bandwidth, polarization-sensitive detection are pointed out on the basis of the state-of-the-art 2D photodetectors. Initial applications based on 2D material photodetectors are mentioned. Finally, an outlook is delivered, the challenges and future directions are discussed, and general advice for designing and realizing novel high-performance photodetectors is given to provide a guideline for the future development of this fast-developing field.

745 citations

Book ChapterDOI
01 Jan 1991
TL;DR: Improvement in understanding has led in some cases to better management with improved outcome for the patient, whereas in other areas the way is now clear towards a better prospect for the future.
Abstract: The various contributions to this book record the remarkable progress that has been made in the understanding and management of pancreatic diseases over the last decade. The improvement in understanding has led in some cases to better management with improved outcome for the patient, whereas in other areas the way is now clear towards a better prospect for the future.

552 citations