scispace - formally typeset
Search or ask a question
Author

Hongbo Lu

Bio: Hongbo Lu is an academic researcher from Hefei University of Technology. The author has contributed to research in topics: Liquid crystal & Terahertz radiation. The author has an hindex of 21, co-authored 137 publications receiving 1738 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor, which exhibited excellent specific recognition ability to AA.

97 citations

Journal ArticleDOI
TL;DR: In this article, a triblock copolymer with Young's modulus (E) of 6 MPa for an elongation at break of 140% and exhibits good electrical properties with a carrier mobility of 9 × 10−4 cm2 V−1 s−1.
Abstract: A novel semiconductor–rubber–semiconductor (P3HT–PMA–P3HT) triblock copolymer has been designed and prepared according to the principle of thermoplastic elastomers. It behaves as a thermoplastic elastomer with a Young's modulus (E) of 6 MPa for an elongation at break of 140% and exhibits good electrical properties with a carrier mobility of 9 × 10−4 cm2 V−1 s−1. This novel semiconductor may play an important role in low-cost and large-area stretchable electronics.

88 citations

Journal ArticleDOI
TL;DR: A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione (BIBDF)-based low band gap polymer, containing a solubilizing alkyl chain bithiophene unit as a donor, has been synthesized and exhibits efficient ambipolar charge transport.

69 citations

Journal ArticleDOI
TL;DR: The MIP films, which can specifically recognize and has an electrocatalytic effect on the oxidation of Trp and Tyr, together with the amplification function of an OECT, provide a highly sensitive and selective OECT biosensor.

68 citations

Journal ArticleDOI
TL;DR: In this paper, vertically phase-separated poly(3hexylthiophene) (P3HT)-top and poly(methyl methacrylate) (PMMA)-bottom blend films were developed for the facile fabrication of organic thin-film transistor (OTFT) applications.
Abstract: Semiconducting/insulating polymer blends are promising materials for use in organic thin film transistor (OTFT) applications. Here, vertically phase-separated poly(3-hexylthiophene) (P3HT)-top and poly(methyl methacrylate) (PMMA)-bottom blend films were developed for the facile fabrication of OTFTs with excellent electrical properties. The microstructures of the blend films could be adjusted simply by altering the film processing conditions, which impacted the electrical properties of the OTFTs based on the blend films. A decrease in the P3HT content of the blend film significantly reduced the interface roughness between the semiconductor (P3HT) and dielectric (PMMA) layers, which reduced charge trapping or scattering, thereby increasing the field-effect mobility. A higher solution concentration tended to increase the drying time during film deposition, which allowed the P3HT molecules to self-organize over a long period of time. This led to an increase in the ordering of the phase-separated P3HT film, which significantly improved the device performance. TFTs based on a P3HT/PMMA (1/39 w/w) film prepared from a 4 wt% blend solution showed the best field-effect performance with a saturated field-effect mobility of 0.022 cm2 V−1 s−1 and an Ion/Ioff current ratio of 2 × 105. The vertically stratified P3HT/PMMA films were also suitable for the fabrication of all-polymer TFT devices on flexible substrates.

67 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations

Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the next generation of smart windows based on organic materials which can change their properties by reflecting or transmitting excess solar energy (infrared radiation) in such a way that comfortable indoor temperatures can be maintained throughout the year.
Abstract: Windows are vital elements in the built environment that have a large impact on the energy consumption in indoor spaces, affecting heating and cooling and artificial lighting requirements. Moreover, they play an important role in sustaining human health and well-being. In this review, we discuss the next generation of smart windows based on organic materials which can change their properties by reflecting or transmitting excess solar energy (infrared radiation) in such a way that comfortable indoor temperatures can be maintained throughout the year. Moreover, we place emphasis on windows that maintain transparency in the visible region so that additional energy is not required to retain natural illumination. We discuss a number of ways to fabricate windows which remain as permanent infrared control elements throughout the year as well as windows which can alter transmission properties in presence of external stimuli like electric fields, temperature and incident light intensity. We also show the potential impact of these windows on energy saving in different climate conditions.

877 citations

Journal ArticleDOI
06 Jan 2017-Science
TL;DR: The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain, and the fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon.
Abstract: Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

796 citations