scispace - formally typeset
Search or ask a question
Author

Hongfei Li

Bio: Hongfei Li is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Battery (electricity) & Electrolyte. The author has an hindex of 50, co-authored 88 publications receiving 8409 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of recent progress in different rechargeable Zn-based batteries (RZBs) systems including mild electrolyte RZBs, alkaline RZB, hybrid RZBP, Zn ion capacitors and Zn air batteries is presented in this paper.

702 citations

Journal ArticleDOI
TL;DR: In this article, an extremely safe and wearable solid-state zinc ion battery (ZIB) comprising a novel gelatin and PAM-based hierarchical polymer electrolyte (HPE) and an α-MnO2 nanorod/carbon nanotube (CNT) cathode was introduced.
Abstract: Flexible and safe batteries, coupled with high performance and low cost, constitute a radical advance in portable and wearable electronics, especially considering the fact that these flexible devices are likely to experience more mechanical impacts and potential damage than well-protected rigid batteries. However, flexible lithium ion batteries (LIBs) are vastly limited by their intrinsic safety and cost issues. Here we introduce an extremely safe and wearable solid-state zinc ion battery (ZIB) comprising a novel gelatin and PAM based hierarchical polymer electrolyte (HPE) and an α-MnO2 nanorod/carbon nanotube (CNT) cathode. Benefiting from the well-designed electrolyte and electrodes, the flexible solid-state ZIB delivers a high areal energy density and power density (6.18 mW h cm−2 and 148.2 mW cm−2, respectively), high specific capacity (306 mA h g−1) and excellent cycling stability (97% capacity retention after 1000 cycles at 2772 mA g−1). More importantly, the solid-state ZIB offers a high wearability and an extreme safety performance over conventional flexible LIBs, and performs very well under various severe conditions, such as being greatly cut, bent, hammered, punctured, sewed, washed in water or even put on fire. In addition, flexible ZIBs were integrated in series to power a commercial smart watch, a wearable pulse sensor, and a smart insole, which has been achieved to the best of our knowledge for the first time. These results demonstrate the promising potential of ZIBs in many practical wearable applications and offer a new platform for flexible and wearable energy storage technologies.

645 citations

Journal ArticleDOI
TL;DR: The fabrication of photoluminescent Ti3 C2 MXene quantum dots by a facile hydrothermal method is reported, which may greatly extend the applications of MXene-based materials.
Abstract: The fabrication of photoluminescent Ti3 C2 MXene quantum dots (MQDs) by a facile hydrothermal method is reported, which may greatly extend the applications of MXene-based materials. Interestingly, the as-prepared MQDs show excitation-dependent photoluminescence spectra with quantum yields of up to ≈10% due to strong quantum confinement. The applications of MQDs as biocompatible multicolor cellular imaging probes and zinc ion sensors are demonstrated.

602 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive understanding on synthesis, morphology control, electrochemical performances and solid-state devices of the nanostructured polypyrrole (PPy) and its nanocomposites.

568 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach to enhance PPy's capacitance and cycling stability by forming a freestanding and conductive hybrid film through intercalating polypyrrole into layered Ti3C2, a MXene material, was reported.
Abstract: Though polypyrrole (PPy) is widely used in flexible supercapacitors owing to its high electrochemical activity and intrinsic flexibility, limited capacitance and cycling stability of freestanding PPy films greatly reduce their practicality in real-world applications. Herein, we report a new approach to enhance PPy's capacitance and cycling stability by forming a freestanding and conductive hybrid film through intercalating PPy into layered Ti3C2 (l-Ti3C2, a MXene material). The capacitance increases from 150 (300) to 203 mF cm−2 (406 F cm−3). Moreover, almost 100% capacitance retention is achieved, even after 20 000 charging/discharging cycles. The analyses reveal that l-Ti3C2 effectively prevents dense PPy stacking, benefiting the electrolyte infiltration. Furthermore, strong bonds, formed between the PPy backbones and surfaces of l-Ti3C2, not only ensure good conductivity and provide precise pathways for charge-carrier transport but also improve the structural stability of PPy backbones. The freestanding PPy/l-Ti3C2 film is further used to fabricate an ultra-thin all-solid-state supercapacitor, which shows an excellent capacitance (35 mF cm−2), stable performance at any bending state and during 10 000 charging/discharging cycles. This novel strategy provides a new way to design conductive polymer-based freestanding flexible electrodes with greatly improved electrochemical performances.

549 citations


Cited by
More filters
01 Jun 2005

3,154 citations

Journal ArticleDOI
TL;DR: Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability.
Abstract: Wearable biosensors are garnering substantial interest due to their potential to provide continuous, real-time physiological information via dynamic, noninvasive measurements of biochemical markers in biofluids, such as sweat, tears, saliva and interstitial fluid. Recent developments have focused on electrochemical and optical biosensors, together with advances in the noninvasive monitoring of biomarkers including metabolites, bacteria and hormones. A combination of multiplexed biosensing, microfluidic sampling and transport systems have been integrated, miniaturized and combined with flexible materials for improved wearability and ease of operation. Although wearable biosensors hold promise, a better understanding of the correlations between analyte concentrations in the blood and noninvasive biofluids is needed to improve reliability. An expanded set of on-body bioaffinity assays and more sensing strategies are needed to make more biomarkers accessible to monitoring. Large-cohort validation studies of wearable biosensor performance will be needed to underpin clinical acceptance. Accurate and reliable real-time sensing of physiological information using wearable biosensor technologies would have a broad impact on our daily lives.

1,579 citations

Journal ArticleDOI
TL;DR: In this article, two-dimensional transition metal carbides exhibit high gravimetric, volumetric, and areal capacitance values at high charcoefficients at high temperature.
Abstract: Pseudocapacitors based on redox-active materials have relatively high energy density but suffer from low power capability. Here the authors report that two-dimensional transition metal carbides exhibit high gravimetric, volumetric and areal capacitance values at high char…

1,477 citations