scispace - formally typeset
Search or ask a question
Author

Honghai Liu

Bio: Honghai Liu is an academic researcher from Harbin Institute of Technology. The author has contributed to research in topics: Computer science & Gesture recognition. The author has an hindex of 47, co-authored 459 publications receiving 10500 citations. Previous affiliations of Honghai Liu include Peking Union Medical College Hospital & Nanjing Forestry University.


Papers
More filters
Proceedings ArticleDOI
21 May 2001
TL;DR: This paper outlines the 2nd generation of multisensory hand design at DLR, based on the results of the DLR Hand I, with the newly designed sensors as the 6-DOF fingertip force torque sensor, the integrated electronics and the new communication architecture with a reduction of cabling to the hand to only 12 lines.
Abstract: This paper outlines the 2nd generation of multisensory hand design at DLR, based on the results of the DLR Hand I we analysed. An open skeleton structure for better maintenance with semi-shell housing and the new automatically reconfigurable palm have been equipped with more powerful actuators to reach 30 N on the fingertip. The newly designed sensors as the 6-DOF fingertip force torque sensor, the integrated electronics and the new communication architecture with a reduction of cabling to the hand to only 12 lines, are outlined. The Cartesian impedance control of all the fingers completes the new 13-DOF hand.

825 citations

Journal ArticleDOI
TL;DR: This paper deals with the adaptive sliding-mode control problem for nonlinear active suspension systems via the Takagi-Sugeno (T-S) fuzzy approach, and a sufficient condition is proposed for the asymptotical stability of the designing sliding motion.
Abstract: This paper deals with the adaptive sliding-mode control problem for nonlinear active suspension systems via the Takagi-Sugeno (T-S) fuzzy approach. The varying sprung and unsprung masses, the unknown actuator nonlinearity, and the suspension performances are taken into account simultaneously, and the corresponding mathematical model is established. The T-S fuzzy system is used to describe the original nonlinear system for the control-design aim via the sector nonlinearity approach. A sufficient condition is proposed for the asymptotical stability of the designing sliding motion. An adaptive sliding-mode controller is designed to guarantee the reachability of the specified switching surface. The condition can be converted to the convex optimization problems. Simulation results for a half-vehicle active suspension model are provided to demonstrate the effectiveness of the proposed control schemes.

653 citations

Journal ArticleDOI
TL;DR: The Takagi-Sugeno (T-S) fuzzy model approach is adapted with the consideration of the sprung and the unsprung mass variation, the actuator delay and fault, and other suspension performances to design a reliable fuzzy H∞ controller for active suspension systems with actuatordelay and fault.
Abstract: This paper is focused on reliable fuzzy H∞ controller design for active suspension systems with actuator delay and fault. The Takagi-Sugeno (T-S) fuzzy model approach is adapted in this study with the consideration of the sprung and the unsprung mass variation, the actuator delay and fault, and other suspension performances. By the utilization of the parallel-distributed compensation scheme, a reliable fuzzy H∞ performance analysis criterion is derived for the proposed T-S fuzzy model. Then, a reliable fuzzy H∞ controller is designed such that the resulting T-S fuzzy system is reliable in the sense that it is asymptotically stable and has the prescribed H∞ performance under given constraints. The existence condition of the reliable fuzzy H∞ controller is obtained in terms of linear matrix inequalities (LMIs) Finally, a quarter- vehicle suspension model is used to demonstrate the effectiveness and potential of the proposed design techniques.

516 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, using SVM (support vector machine) classifier, the AAP antigenicity scale approach has much better performance than the existing scales based on the single amino acid propensity, which is the essence why the new approach is superior to the existing ones.
Abstract: Identification of antigenic sites on proteins is of vital importance for developing synthetic peptide vaccines, immunodiagnostic tests and antibody production. Currently, most of the prediction algorithms rely on amino acid propensity scales using a sliding window approach. These methods are oversimplified and yield poor predicted results in practice. In this paper, a novel scale, called the amino acid pair (AAP) antigenicity scale, is proposed that is based on the finding that B-cell epitopes favor particular AAPs. It is demonstrated that, using SVM (support vector machine) classifier, the AAP antigenicity scale approach has much better performance than the existing scales based on the single amino acid propensity. The AAP antigenicity scale can reflect some special sequence-coupled feature in the B-cell epitopes, which is the essence why the new approach is superior to the existing ones. It is anticipated that with the continuous increase of the known epitope data, the power of the AAP antigenicity scale approach will be further enhanced.

509 citations

Proceedings ArticleDOI
14 Oct 2008
TL;DR: This paper presents a new developed multisensory five-fingered dexterous robot hand: the DLR/HIT Hand II, which integrates position, force/torque and temperature sensors, and can communicate with external with PPSeCo, CAN and Internet.
Abstract: This paper presents a new developed multisensory five-fingered dexterous robot hand: the DLR/HIT Hand II. The hand has an independent palm and five identical modular fingers, each finger has three DOFs and four joints. All the actuators and electronics are integrated in the finger body and the palm. By using powerful super flat brushless DC motors, tiny harmonic drivers and BGA form DSPs and FPGAs, the whole fingerpsilas size is about one third smaller than the former finger in the DLR/HIT Hand I. By using the steel coupling mechanism, the phalanx distalpsilas transmission ratio is exact 1:1 in the whole movement range. At the same time, the multisensory dexterous hand integrates position, force/torque and temperature sensors. The hierarchical hardware structure of the hand consists of the finger DSPs, the finger FPGAs, the palm FPGA and the PCI based DSP/FPGA board. The hand can communicate with external with PPSeCo, CAN and Internet. Instead of extra cover, the packing mechanism of the hand is implemented directly in the finger body and palm to make the hand smaller and more human like. The whole weight of the hand is about 1.5Kg and the fingertip force can reach 10N.

293 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Jan 2006

3,012 citations

Journal ArticleDOI
TL;DR: This paper is aimed to demonstrate a close-up view about Big Data, including Big Data applications, Big Data opportunities and challenges, as well as the state-of-the-art techniques and technologies currently adopt to deal with the Big Data problems.

2,516 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: The results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.
Abstract: Two people with long-standing tetraplegia use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. John Donoghue and colleagues have previously demonstrated that people with tetraplegia can learn to use neural signals from the motor cortex to control a computer cursor. Work from another lab has also shown that monkeys can learn to use such signals to feed themselves with a robotic arm. Now, Donoghue and colleagues have advanced the technology to a level at which two people with long-standing paralysis — a 58-year-old woman and a 66-year-old man — are able to use a neural interface to direct a robotic arm to reach for and grasp objects. One subject was able to learn to pick up and drink from a bottle using a device implanted 5 years earlier, demonstrating not only that subjects can use the brain–machine interface, but also that it has potential longevity. Paralysis following spinal cord injury, brainstem stroke, amyotrophic lateral sclerosis and other disorders can disconnect the brain from the body, eliminating the ability to perform volitional movements. A neural interface system1,2,3,4,5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with long-standing tetraplegia can use a neural interface system to move and click a computer cursor and to control physical devices6,7,8. Able-bodied monkeys have used a neural interface system to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here we demonstrate the ability of two people with long-standing tetraplegia to use neural interface system-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm and hand over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor 5 years earlier, also used a robotic arm to drink coffee from a bottle. Although robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after injury to the central nervous system, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals.

2,181 citations