scispace - formally typeset
Search or ask a question
Author

Honghai Zhang

Other affiliations: Princeton University, Google, IBM  ...read more
Bio: Honghai Zhang is an academic researcher from Lamont–Doherty Earth Observatory. The author has contributed to research in topics: Wireless network & Scheduling (computing). The author has an hindex of 30, co-authored 80 publications receiving 4750 citations. Previous affiliations of Honghai Zhang include Princeton University & Google.


Papers
More filters
Journal Article
TL;DR: A decentralized density control algorithm, Optimal Geographical Density Control (OGDC), is devised for density control in large scale sensor networks and can maintain coverage as well as connectivity, regardless of the relationship between the radio range and the sensing range.
Abstract: In this paper, we address the issues of maintaining sensing coverage and connectivity by keeping a minimum number of sensor nodes in the active mode in wireless sensor networks. We investigate the relationship between coverage and connectivity by solving the following two sub-problems. First, we prove that if the radio range is at least twice the sensing range, complete coverage of a convex area implies connectivity among the working set of nodes. Second, we derive, under the ideal case in which node density is sufficiently high, a set of optimality conditions under which a subset of working sensor nodes can be chosen for complete coverage. Based on the optimality conditions, we then devise a decentralized density control algorithm, Optimal Geographical Density Control (OGDC), for density control in large scale sensor networks. The OGDC algorithm is fully localized and can maintain coverage as well as connectivity, regardless of the relationship between the radio range and the sensing range. Ns-2 simulations show that OGDC outperforms existing density control algorithms [25, 26, 29] with respect to the number of working nodes needed and network lifetime (with up to 50% improvement), and achieves almost the same coverage as the algorithm with the best result.

1,559 citations

Journal ArticleDOI
TL;DR: In virtualizing a base station's uplink and downlink resources into slices, NVS meets three key requirements-isolation, customization, and efficient resource utilization-using two novel features: a provably optimal slice scheduler and a generic framework for efficiently enabling customized flow scheduling within the base station on a per-slice basis.
Abstract: This paper describes the design and implementation of a network virtualization substrate (NVS ) for effective virtualization of wireless resources in cellular networks. Virtualization fosters the realization of several interesting deployment scenarios such as customized virtual networks, virtual services, and wide-area corporate networks, with diverse performance objectives. In virtualizing a base station's uplink and downlink resources into slices, \ssr NVS meets three key requirements-isolation, customization, and efficient resource utilization-using two novel features: 1) NVS introduces a provably optimal slice scheduler that allows existence of slices with bandwidth-based and resource-based reservations simultaneously; and 2) NVS includes a generic framework for efficiently enabling customized flow scheduling within the base station on a per-slice basis. Through a prototype implementation and detailed evaluation on a WiMAX testbed, we demonstrate the efficacy of \ssr NVS. For instance, we show for both downlink and uplink directions that \ssr NVS can run different flow schedulers in different slices, run different slices simultaneously with different types of reservations, and perform slice-specific application optimizations for providing customized services.

339 citations

Journal ArticleDOI
TL;DR: A modeling, simulation, and emulation framework for WSNs in J-Sim - an open source, component-based compositional network simulation environment developed entirely in Java that provides an object-oriented definition of target, sensor, and sink nodes, sensor and wireless communication channels, and physical media such as seismic channels, mobility models, and power models.
Abstract: Wireless sensor networks have gained considerable attention in the past few years. They have found application domains in battlefield communication, homeland security, pollution sensing, and traffic monitoring. As such, there has been an increasing need to define and develop simulation frameworks for carrying out high-fidelity WSN simulation. In this article we present a modeling, simulation, and emulation framework for WSNs in J-Sim - an open source, component-based compositional network simulation environment developed entirely in Java. This framework is built on the autonomous component architecture and extensible internetworking framework of J-Sim, and provides an object-oriented definition of target, sensor, and sink nodes, sensor and wireless communication channels, and physical media such as seismic channels, mobility models, and power models (both energy-producing and energy-consuming components). Application-specific models can be defined by subclassing classes in the simulation framework and customizing their behaviors. We also include in J-Sim a set of classes and mechanisms to realize network emulation. We demonstrate the use of the proposed WSN simulation framework by implementing several well-known localization, geographic routing, and directed diffusion protocols, and perform performance comparisons (in terms of the execution time incurred and memory used) in simulating WSN scenarios in J-Sim and ns-2. The simulation study indicates the WSN framework in J-Sim is much more scalable than ns-2 (especially in memory usage). We also demonstrate the use of the WSN framework in carrying out real-life full-fledged Future Combat System (FCS) simulation and emulation

301 citations

Proceedings ArticleDOI
24 May 2004
TL;DR: The fundamental limits of sensor network lifetime are explored, and the derived upper bounds apply not only to networks of large areas but also to small-area networks.
Abstract: In this paper, we explore the fundamental limits of sensor network lifetime that all algorithms can possibly achieve. Specifically, under the assumptions that nodes are deployed as a Poisson point process with density λ in a square region with side length l and each sensor can cover a unit-area disk, we first derive the necessary and sufficient condition of the node density in order to maintain complete k-coverage with probability approaching 1. With this result, we obtain that if #955; = log l2 + (k+2)log log l2 + c(l), c(l) → -∞, as l → +∞, the sensor network lifetime (for maintaining complete coverage) is upper bounded by kT with probability approaching 1 as l → +∞, where T is the lifetime of each sensor. Second, we derive, given a fixed node density in a finite (but reasonably large) region, the upper bounds of lifetime when only α-portion of the region is required to be covered at any time. We also carry out simulations to validate the derived results. Simulation results indicate that the derived upper bounds apply not only to networks of large areas but also to small-area networks.

278 citations

Journal ArticleDOI
TL;DR: In this article, a parsimonious formulation of tropical Pacific dynamics yields a response that is consistent with observations and attributable to rising GHGs, and they use the same dynamics to show that the erroneous warming in state-of-theart models is a consequence of the cold bias of their equatorial cold tongues.
Abstract: As exemplified by El Nino, the tropical Pacific Ocean strongly influences regional climates and their variability worldwide1–3. It also regulates the rate of global temperature rise in response to rising GHGs4. The tropical Pacific Ocean response to rising GHGs impacts all of the world’s population. State-of-the-art climate models predict that rising GHGs reduce the west-to-east warm-to-cool sea surface temperature gradient across the equatorial Pacific5. In nature, however, the gradient has strengthened in recent decades as GHG concentrations have risen sharply5. This stark discrepancy between models and observations has troubled the climate research community for two decades. Here, by returning to the fundamental dynamics and thermodynamics of the tropical ocean–atmosphere system, and avoiding sources of model bias, we show that a parsimonious formulation of tropical Pacific dynamics yields a response that is consistent with observations and attributable to rising GHGs. We use the same dynamics to show that the erroneous warming in state-of-the-art models is a consequence of the cold bias of their equatorial cold tongues. The failure of state-of-the-art models to capture the correct response introduces critical error into their projections of climate change in the many regions sensitive to tropical Pacific sea surface temperatures. Observations of the tropical Pacific exhibit an increasing zonal sea surface temperature gradient, while climate models predict the opposite. This study shows that an increased gradient is consistent with greenhouse gas warming, and that climate model discrepancies arise from cold tongue biases.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper surveys the state-of-the-art literature on C-RAN and can serve as a starting point for anyone willing to understand C- RAN architecture and advance the research on the network.
Abstract: Cloud Radio Access Network (C-RAN) is a novel mobile network architecture which can address a number of challenges the operators face while trying to support growing end-user's needs. The main idea behind C-RAN is to pool the Baseband Units (BBUs) from multiple base stations into centralized BBU Pool for statistical multiplexing gain, while shifting the burden to the high-speed wireline transmission of In-phase and Quadrature (IQ) data. C-RAN enables energy efficient network operation and possible cost savings on baseband resources. Furthermore, it improves network capacity by performing load balancing and cooperative processing of signals originating from several base stations. This paper surveys the state-of-the-art literature on C-RAN. It can serve as a starting point for anyone willing to understand C-RAN architecture and advance the research on C-RAN.

1,516 citations

Proceedings ArticleDOI
03 Mar 2008
TL;DR: An overview of the OMNeT++ framework, recent challenges brought about by the growing amount and complexity of third party simulation models, and the solutions the authors introduce in the next major revision of the simulation framework are presented.
Abstract: The OMNeT++ discrete event simulation environment has been publicly available since 1997. It has been created with the simulation of communication networks, multiprocessors and other distributed systems in mind as application area, but instead of building a specialized simulator, OMNeT++ was designed to be as general as possible. Since then, the idea has proven to work, and OMNeT++ has been used in numerous domains from queuing network simulations to wireless and ad-hoc network simulations, from business process simulation to peer-to-peer network, optical switch and storage area network simulations. This paper presents an overview of the OMNeT++ framework, recent challenges brought about by the growing amount and complexity of third party simulation models, and the solutions we introduce in the next major revision of the simulation framework.

1,450 citations

Journal ArticleDOI
TL;DR: The hybrid simulation framework Veins (Vehicles in Network Simulation), composed of the network simulator OMNeT++ and the road traffic simulator SUMO, is developed and can advance the state-of-the-art in performance evaluation of IVC and provide means to evaluate developed protocols more accurately.
Abstract: Recently, many efforts have been made to develop more efficient Inter-Vehicle Communication (IVC) protocols for on-demand route planning according to observed traffic congestion or incidents, as well as for safety applications. Because practical experiments are often not feasible, simulation of network protocol behavior in Vehicular Ad Hoc Network (VANET) scenarios is strongly demanded for evaluating the applicability of developed network protocols. In this work, we discuss the need for bidirectional coupling of network simulation and road traffic microsimulation for evaluating IVC protocols. As the selection of a mobility model influences the outcome of simulations to a great extent, the use of a representative model is necessary for producing meaningful evaluation results. Based on these observations, we developed the hybrid simulation framework Veins (Vehicles in Network Simulation), composed of the network simulator OMNeT++ and the road traffic simulator SUMO. In a proof-of-concept study, we demonstrate its advantages and the need for bidirectionally coupled simulation based on the evaluation of two protocols for incident warning over VANETs. With our developed methodology, we can advance the state-of-the-art in performance evaluation of IVC and provide means to evaluate developed protocols more accurately.

1,356 citations

Proceedings ArticleDOI
13 Mar 2005
TL;DR: An efficient method to extend the sensor network life time by organizing the sensors into a maximal number of set covers that are activated successively, and designing two heuristics that efficiently compute the sets, using linear programming and a greedy approach are proposed.
Abstract: A critical aspect of applications with wireless sensor networks is network lifetime. Power-constrained wireless sensor networks are usable as long as they can communicate sensed data to a processing node. Sensing and communications consume energy, therefore judicious power management and sensor scheduling can effectively extend network lifetime. To cover a set of targets with known locations when ground access in the remote area is prohibited, one solution is to deploy the sensors remotely, from an aircraft. The lack of precise sensor placement is compensated by a large sensor population deployed in the drop zone, that would improve the probability of target coverage. The data collected from the sensors is sent to a central node (e.g. cluster head) for processing. In this paper we propose un efficient method to extend the sensor network life time by organizing the sensors into a maximal number of set covers that are activated successively. Only the sensors from the current active set are responsible for monitoring all targets and for transmitting the collected data, while all other nodes are in a low-energy sleep mode. By allowing sensors to participate in multiple sets, our problem formulation increases the network lifetime compared with related work [M. Cardei et al], that has the additional requirements of sensor sets being disjoint and operating equal time intervals. In this paper we model the solution as the maximum set covers problem and design two heuristics that efficiently compute the sets, using linear programming and a greedy approach. Simulation results are presented to verify our approaches.

1,046 citations

Proceedings ArticleDOI
13 Mar 2005
TL;DR: This paper suggests that the base station be mobile; in this way, the nodes located close to it change over time and the obtained improvement in terms of network lifetime is in the order of 500%.
Abstract: Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%.

937 citations