scispace - formally typeset
Search or ask a question
Author

Hongkyw Choi

Bio: Hongkyw Choi is an academic researcher from Electronics and Telecommunications Research Institute. The author has contributed to research in topics: Graphene & Graphene nanoribbons. The author has an hindex of 19, co-authored 52 publications receiving 2306 citations. Previous affiliations of Hongkyw Choi include Korea University of Science and Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two- dimensional graphene layer is integrated.
Abstract: The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 322° at room temperature More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects

842 citations

Journal ArticleDOI
TL;DR: In this paper, the gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional artificial material, referred to as a metamaterial, into which an atomically thin, gated twodimensional graphene layer is integrated.
Abstract: The extraordinary electronic properties of graphene, such as its continuously gate-variable ambipolar field effect and the resulting steep change in resistivity, provided the main thrusts for the rapid advance of graphene electronics. The gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of low-energy photons with massless Dirac fermions, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications due to its nonresonant Drude-like behaviour. Here, we experimentally demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional artificial material, referred to as a metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances and the corresponding field enhancement in the metamaterial. Although the thickness of the embedded single-layer graphene is more than 'six' orders of magnitude smaller than the wavelength (< {\lambda}/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 90 per cent and its phase by more than 40 degrees at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, especially when fabricated with multilayer graphene, which is indicative of persistent photonic memory effects.

548 citations

Journal ArticleDOI
TL;DR: In this article, a flexible room temperature NO2 gas sensor consisting of vertical carbon nanotubes (CNTs)/reduced graphene hybrid film supported by a polyimide substrate is presented.
Abstract: We present a flexible room temperature NO2 gas sensor consisting of vertical carbon nanotubes (CNTs)/reduced graphene hybrid film supported by a polyimide substrate. The reduced graphene film alone showed a negligible sensor response, exhibiting abnormal N–P transitions during the initial NO2 injection. A hybrid film, formed by the growth of a vertically aligned CNT array (with CNTs 20 μm in length) on the reduced graphene film surface, exhibited remarkably enhanced sensitivities with weak N–P transitions. The increase in sensitivity was mainly attributed to the high sensitivity of the CNT arrays. The outstanding flexibility of the reduced graphene films ensured stable sensing performances in devices submitted to extreme bending stress.

269 citations

Journal ArticleDOI
01 Sep 2014-Small
TL;DR: Large-scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated, enabling an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%.
Abstract: Graphene leading to high surface-to-volume ratio and outstanding conductivity is applied for gas molecule sensing with fully utilizing its unique transparent and flexible functionalities which cannot be expected from solid-state gas sensors. In order to attain a fast response and rapid recovering time, the flexible sensors also require integrated flexible and transparent heaters. Here, large-scale flexible and transparent gas molecule sensor devices, integrated with a graphene sensing channel and a graphene transparent heater for fast recovering operation, are demonstrated. This combined all-graphene device structure enables an overall device optical transmittance that exceeds 90% and reliable sensing performance with a bending strain of less than 1.4%. In particular, it is possible to classify the fast (≈14 s) and slow (≈95 s) response due to sp(2) -carbon bonding and disorders on graphene and the self-integrated graphene heater leads to the rapid recovery (≈11 s) of a 2 cm × 2 cm sized sensor with reproducible sensing cycles, including full recovery steps without significant signal degradation under exposure to NO2 gas.

144 citations

Journal ArticleDOI
01 Mar 2015-Small
TL;DR: This work demonstrates that optical sintering is an efficient way to provide fast welding of Ag wire-to-wire junctions in stacked electrodes of graphene/AgNWs, leading to enhanced conductivity as well as superior long-term stability under oxygen and sulfur atmospheres.
Abstract: Graphene/silver nanowire (AgNWs) stacked electrodes, i.e., graphene/AgNWs, are fabricated on a glass substrate by air-spray coating of AgNWs followed by subsequent encapsulation via a wet transfer of single-layer graphene (SLG) and multilayer graphene (MLG, reference specimen) sheets. Here, graphene is introduced to improve the optical sintering efficiency of a xenon flash lamp by controlling optical transparency and light absorbing yield in stacked graphene/AgNW electrodes, facilitating the fusion at contacts of AgNWs. Intense pulsed light (IPL) sintering induced ultrafast (<20 ms) welding of AgNW junctions encapsulated by graphene, resulting in approximately a four-fold reduction in the sheet resistance of IPL-treated graphene/AgNWs compared to that of IPL-treated AgNWs. The role of graphene in IPL-treated graphene/AgNWs is further investigated as a passivation layer against thermal oxidation and sulfurization. This work demonstrates that optical sintering is an efficient way to provide fast welding of Ag wire-to-wire junctions in stacked electrodes of graphene/AgNWs, leading to enhanced conductivity as well as superior long-term stability under oxygen and sulfur atmospheres.

68 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: Electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin akin to human skin.
Abstract: Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.

1,950 citations

Journal ArticleDOI
TL;DR: Recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible is reviewed, with opinions of opportunities and challenges in this rapidly developing research field.
Abstract: Metamaterials are composed of periodic subwavelength metal/dielectric structures that resonantly couple to the electric and/or magnetic components of the incident electromagnetic fields, exhibiting properties that are not found in nature. This class of micro- and nano-structured artificial media have attracted great interest during the past 15 years and yielded ground-breaking electromagnetic and photonic phenomena. However, the high losses and strong dispersion associated with the resonant responses and the use of metallic structures, as well as the difficulty in fabricating the micro- and nanoscale 3D structures, have hindered practical applications of metamaterials. Planar metamaterials with subwavelength thickness, or metasurfaces, consisting of single-layer or few-layer stacks of planar structures, can be readily fabricated using lithography and nanoprinting methods, and the ultrathin thickness in the wave propagation direction can greatly suppress the undesirable losses. Metasurfaces enable a spatially varying optical response (e.g. scattering amplitude, phase, and polarization), mold optical wavefronts into shapes that can be designed at will, and facilitate the integration of functional materials to accomplish active control and greatly enhanced nonlinear response. This paper reviews recent progress in the physics of metasurfaces operating at wavelengths ranging from microwave to visible. We provide an overview of key metasurface concepts such as anomalous reflection and refraction, and introduce metasurfaces based on the Pancharatnam-Berry phase and Huygens' metasurfaces, as well as their use in wavefront shaping and beam forming applications, followed by a discussion of polarization conversion in few-layer metasurfaces and their related properties. An overview of dielectric metasurfaces reveals their ability to realize unique functionalities coupled with Mie resonances and their low ohmic losses. We also describe metasurfaces for wave guidance and radiation control, as well as active and nonlinear metasurfaces. Finally, we conclude by providing our opinions of opportunities and challenges in this rapidly developing research field.

1,528 citations

Journal ArticleDOI
TL;DR: An in-depth view of Terahertz Band (0.1-10 THz) communication, which is envisioned as a key technology to satisfy the increasing demand for higher speed wireless communication, is provided.

1,206 citations

Journal ArticleDOI
TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Abstract: Graphene-based materials exhibit remarkable electronic, optical, and mechanical properties, which has resulted in both high scientific interest and huge potential for a variety of applications. Furthermore, the family of graphene-based materials is growing because of developments in preparation methods. Raman spectroscopy is a versatile tool to identify and characterize the chemical and physical properties of these materials, both at the laboratory and mass-production scale. This technique is so important that most of the papers published concerning these materials contain at least one Raman spectrum. Thus, here, we systematically review the developments in Raman spectroscopy of graphene-based materials from both fundamental research and practical (i.e., device applications) perspectives. We describe the essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene. Furthermore, the shear, layer-breathing, G and 2D modes of multilayer graphene with different stacking orders are discussed. Techniques to determine the number of graphene layers, to probe resonance Raman spectra of monolayer and multilayer graphenes and to obtain Raman images of graphene-based materials are also presented. The extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described, which have also been extended to other graphene-based materials, such as graphene quantum dots, carbon dots, graphene oxide, nanoribbons, chemical vapor deposition-grown and SiC epitaxially grown graphene flakes, composites, and graphene-based van der Waals heterostructures. These fundamental properties have been used to probe the states, effects, and mechanisms of graphene materials present in the related heterostructures and devices. We hope that this review will be beneficial in all the aspects of graphene investigations, from basic research to material synthesis and device applications.

1,184 citations