scispace - formally typeset
Search or ask a question
Author

Hongwei Gu

Bio: Hongwei Gu is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Catalysis & Nanoparticle. The author has an hindex of 51, co-authored 235 publications receiving 14360 citations. Previous affiliations of Hongwei Gu include Hong Kong University of Science and Technology & Brandeis University.


Papers
More filters
Journal ArticleDOI
TL;DR: Examples of the design and biomedical application of multifunctional magnetic nanoparticles are reviewed, indicating that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation.
Abstract: The combination of nanotechnology and molecular biology has developed into an emerging research area: nanobiotechnology. Magnetic nanoparticles are well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional magnetic nanoparticles. Currently, there are two strategies to fabricate magnetic nanoparticle-based multifunctional nanostructures. The first, molecular functionalization, involves attaching antibodies, proteins, and dyes to the magnetic nanoparticles. The other method integrates the magnetic nanoparticles with other functional nanocomponents, such as quantum dots (QDs) or metallic nanoparticles. Because they can exhibit several features synergistically and deliver more than one function simultaneously, such multifunctional magnetic nanoparticles could have unique advantages in biomedical applications. In this Account, we review examples of the design and biomedical application of multifunctional magnetic nanoparticles. After their conjugation with proper ligands, antibodies, or proteins, the biofunctional magnetic nanoparticles exhibit highly selective binding. These results indicate that such nanoparticles could be applied to biological medical problems such as protein purification, bacterial detection, and toxin decorporation. The hybrid nanostructures, which combine magnetic nanoparticles with other nanocomponents, exhibit paramagnetism alongside features such as fluorescence or enhanced optical contrast. Such structures could provide a platform for enhanced medical imaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multicomponent magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nanomedicine.

1,754 citations

Journal ArticleDOI
TL;DR: Using nitrilotriacetic acid as the functional molecule, an M/Fe2O3-DA-NTA (M = Co or SmCo5.2) nanostructure is created, which possesses high stability and specificity for separating histidine-tagged proteins.
Abstract: We report on the use of dopamine (DA) as a robust molecular anchor to link functional molecules to the iron oxide shell of magnetic nanoparticles. Using nitrilotriacetic acid (NTA) as the functional molecule, we created a system with an M/Fe2O3-DA-NTA (M = Co or SmCo5.2) nanostructure, which possesses high stability and specificity for separating histidine-tagged proteins. The well-established biocompatibility of iron oxide and the robust covalent bonds between DA and Fe2O3 render this strategy attractive for constructing biofunctional magnetic nanoparticles containing iron oxide.

841 citations

Journal ArticleDOI
TL;DR: Heterodimers of CdS and FePt with sizes of approximately 7 nm exhibit both superparamagnetism and fluorescence, indicating that the discrete properties of the individual parts of the dimers are preserved.
Abstract: Sequential addition of sulfur and Cd(acac)2 into the colloid solution of FePt nanoparticles (∼2.5 nm) under a reductive environment generates heterodimers of CdS and FePt with sizes of ∼7 nm. The heterodimers exhibit both superparamagnetism and fluorescence, indicating that the discrete properties of the individual parts of the dimers are preserved. This simple methodology may lead to the production of large quantities of various heterostructures with tailored properties on the nanoscale.

695 citations

Journal ArticleDOI
TL;DR: A general strategy to generate biofunctional magnetic nanoparticles is highlighted, applications for these nanoparticles in protein separation and pathogen detection are illustrated, and the high sensitivity and high selectivity achieved by this system are analyzed.

671 citations

Journal ArticleDOI
TL;DR: The synthesis of vancomycin (Van)-capped Au nanoparticles (Au@Van) and their enhanced in vitro antibacterial activities suggest that gold nanoparticles may serve as a useful model system to explore multi/polyvalent interactions of ligand−receptor pairs.
Abstract: Here we report the synthesis of vancomycin (Van)-capped Au nanoparticles (Au@Van) and their enhanced in vitro antibacterial activities. Au@Van presumably acts as a rigid polyvalent inhibitor of vancomycin-resistant enterococci (VRE). It also has unexpected activity against an E. coli strain. Our results suggest that gold nanoparticles may serve as a useful model system to explore multi/polyvalent interactions of ligand−receptor pairs.

650 citations


Cited by
More filters
Journal ArticleDOI
19 Oct 2007-Science
TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Abstract: We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

8,669 citations

Journal ArticleDOI
TL;DR: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems.
Abstract: This review focuses on the synthesis, protection, functionalization, and application of magnetic nanoparticles, as well as the magnetic properties of nanostructured systems. Substantial progress in the size and shape control of magnetic nanoparticles has been made by developing methods such as co-precipitation, thermal decomposition and/or reduction, micelle synthesis, and hydrothermal synthesis. A major challenge still is protection against corrosion, and therefore suitable protection strategies will be emphasized, for example, surfactant/polymer coating, silica coating and carbon coating of magnetic nanoparticles or embedding them in a matrix/support. Properly protected magnetic nanoparticles can be used as building blocks for the fabrication of various functional systems, and their application in catalysis and biotechnology will be briefly reviewed. Finally, some future trends and perspectives in these research areas will be outlined.

5,956 citations