scispace - formally typeset
Search or ask a question
Author

Horácio Montenegro

Bio: Horácio Montenegro is an academic researcher from University of São Paulo. The author has contributed to research in topics: Transcriptome & Medicine. The author has an hindex of 10, co-authored 19 publications receiving 404 citations. Previous affiliations of Horácio Montenegro include State University of Campinas & University College London.

Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that the establishment of D. melanogaster in South America was associated with the movement of male‐killing bacteria between species, and was most closely related to that found in D. nebulosa, from the willistoni group.
Abstract: Elucidation of the mechanism of action of selfish genetic elements is difficult outside species with well-defined genetics. Male-killing, the phenomenon whereby inherited bacteria kill male hosts during embryogenesis, is thus uncharacterized in mechanistic terms despite being common and important in insects. We characterized the prevalence, identity and source of the male-killing infection recently discovered in Drosophila melanogaster in Brazil. Male-killing was found to be present in 2.3% of flies from Recife, Brazil, and was uniquely associated with the presence of Spiroplasma infection. The identity of sequences across part of the 16S and across the 16S − 23S ITS region indicated that the male-killing infection of D. melanogaster was very closely related to S. poulsonii , the source of the male-killing infection in willistoni group flies also found in South America. The sequences of two further protein-coding genes indicated the D. melanogaster infection to be most closely related to that found in D. nebulosa , from the willistoni group. Our data suggest that the establishment of D. melanogaster in South America was associated with the movement of male-killing bacteria between species.

127 citations

Journal ArticleDOI
TL;DR: This work reassesses the relatively well-studied phylogeny of the phylum Nemertea (ribbon worms) by using a phylogenomic approach using Illumina-based de novo assembled transcriptomes and automatic orthology prediction methods and observes that concatenation was the best solution, and the results should settle prior debates on nemertean phylogeny.
Abstract: Resolving the deep relationships of ancient animal lineages has proven difficult using standard Sanger-sequencing approaches with a handful of markers. We thus reassess the relatively well-studied phylogeny of the phylum Nemertea (ribbon worms)-for which the targeted gene approaches had resolved many clades but had left key phylogenetic gaps-by using a phylogenomic approach using Illumina-based de novo assembled transcriptomes and automatic orthology prediction methods. The analysis of a concatenated data set of 2,779 genes (411,138 amino acids) with about 78% gene occupancy and a reduced version with 95% gene occupancy, under evolutionary models accounting or not for site-specific amino acid replacement patterns results in a well-supported phylogeny that recovers all major accepted nemertean clades with the monophyly of Heteronemertea, Hoplonemertea, Monostilifera, being well supported. Significantly, all the ambiguous patterns inferred from Sanger-based approaches were resolved, namely the monophyly of Palaeonemertea and Pilidiophora. By testing for possible conflict in the analyzed supermatrix, we observed that concatenation was the best solution, and the results of the analyses should settle prior debates on nemertean phylogeny. The study highlights the importance, feasibility, and completeness of Illumina-based phylogenomic data matrices.

63 citations

Journal ArticleDOI
01 May 2006-Genetica
TL;DR: No effect of infection status on the fitness of females is found and it is concluded that both bacteria probably have other sources of benefits to persist in D. melanogaster populations, either by means of their reproductive manipulations (fitness compensation from male death in Spiroplasma infection and cytoplasmic incompatibility in Wolbachia infection) or by positive fitness interactions on other fitness components.
Abstract: Maternally inherited endosymbionts that manipulate the reproduction of their insect host are very common Aside from the reproductive manipulation they produce, the fitness of these symbionts depends in part on the direct impact they have on the female host Although this parameter has commonly been investigated for single infections, it has much more rarely been established in dual infections We here establish the direct effect of infection with two different symbionts exhibiting different reproductive manipulation phenotypes, both alone and in combination, in the fruit fly Drosophila melanogaster This species carries a cytoplasmic incompatibility inducing Wolbachia and a male-killing Spiroplasma, occurring as single or double (co-) infections in natural populations We assessed direct fitness effects of these bacteria on their host, by comparing larval competitiveness and adult fecundity of uninfected, Wolbachia, Spiroplasma and Wolbachia–Spiroplasma co-infected females We found no effect of infection status on the fitness of females for both estimates, that is, no evidence of any benefits or costs to either single or co-infection This leads to the conclusion that both bacteria probably have other sources of benefits to persist in D melanogaster populations, either by means of their reproductive manipulations (fitness compensation from male death in Spiroplasma infection and cytoplasmic incompatibility in Wolbachia infection) or by positive fitness interactions on other fitness components

55 citations

Journal ArticleDOI
TL;DR: A significant role for Y/X and Y/autosome interactions in maintaining proper expression of male-specific genes, either directly or via indirect effects on male reproductive tissue development or function is implied.
Abstract: The Drosophila Y chromosome is a degenerated, heterochromatic chromosome with few functional genes. Nonetheless, natural variation on the Y chromosome in Drosophila melanogaster has substantial trans-acting effects on the regulation of X-linked and autosomal genes. However, the contribution of Y chromosome divergence to gene expression divergence between species is unknown. In this study, we constructed a series of Y chromosome introgression lines, in which Y chromosomes from either Drosophila sechellia or Drosophila simulans are introgressed into a common D. simulans genetic background. Using these lines, we compared genome-wide gene expression and male reproductive phenotypes between heterospecific and conspecific Y chromosomes. We find significant differences in expression for 122 genes, or 2.84% of all genes analyzed. Genes down-regulated in males with heterospecific Y chromosomes are significantly biased toward testis-specific expression patterns. These same lines show reduced fecundity and sperm competitive ability. Taken together, these results imply a significant role for Y/X and Y/autosome interactions in maintaining proper expression of male-specific genes, either directly or via indirect effects on male reproductive tissue development or function.

53 citations

Journal ArticleDOI
10 Dec 2000-Heredity
TL;DR: Repeated crosses with Canton-S males and successful transmission using the injection of macerates of sex ratio flies, have shown that the skewed sex ratio distortion induced by a male-killing agent has been found to affect Drosophila melanogaster.
Abstract: Sex ratio distortion induced by a male-killing agent has been found to affect Drosophila melanogaster. The trait was discovered accidentally in a collection of flies from markets in Campinas, Sao Paulo State, Brazil. Repeated crosses with Canton-S males (for 15 generations to date) and successful transmission using the injection of macerates of sex ratio flies, have shown that the trait is inherited maternally, is cytoplasmic and is infectious. Crosses with strains marked with the visible mutation white and viability experiments at pre-adult stages of development, indicate that the skewed sex ratio results from male mortality before hatching. Males do not transmit the trait to their progeny.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.
Abstract: The Ensembl Variant Effect Predictor is a powerful toolset for the analysis, annotation, and prioritization of genomic variants in coding and non-coding regions. It provides access to an extensive collection of genomic annotation, with a variety of interfaces to suit different requirements, and simple options for configuring and extending analysis. It is open source, free to use, and supports full reproducibility of results. The Ensembl Variant Effect Predictor can simplify and accelerate variant interpretation in a wide range of study designs.

4,658 citations

Journal ArticleDOI
TL;DR: It is reported that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies and identifying these resistance-inducing bacteria as Wolbachia.
Abstract: Wolbachia are vertically transmitted, obligatory intracellular bacteria that infect a great number of species of arthropods and nematodes. In insects, they are mainly known for disrupting the reproductive biology of their hosts in order to increase their transmission through the female germline. In Drosophila melanogaster, however, a strong and consistent effect of Wolbachia infection has not been found. Here we report that a bacterial infection renders D. melanogaster more resistant to Drosophila C virus, reducing the load of viruses in infected flies. We identify these resistance-inducing bacteria as Wolbachia. Furthermore, we show that Wolbachia also increases resistance of Drosophila to two other RNA virus infections (Nora virus and Flock House virus) but not to a DNA virus infection (Insect Iridescent Virus 6). These results identify a new major factor regulating D. melanogaster resistance to infection by RNA viruses and contribute to the idea that the response of a host to a particular pathogen also depends on its interactions with other microorganisms. This is also, to our knowledge, the first report of a strong beneficial effect of Wolbachia infection in D. melanogaster. The induced resistance to natural viral pathogens may explain Wolbachia prevalence in natural populations and represents a novel Wolbachia–host interaction.

1,083 citations

Journal ArticleDOI
TL;DR: The scope of genomic predictions is expanded, with predictions available for more than 200 organisms, and the SIFT 4G algorithm, which is a faster version of SIFT that enables practical computations on reference genomes, is described.
Abstract: The SIFT (sorting intolerant from tolerant) algorithm helps bridge the gap between mutations and phenotypic variations by predicting whether an amino acid substitution is deleterious. SIFT has been used in disease, mutation and genetic studies, and a protocol for its use has been previously published with Nature Protocols. This updated protocol describes SIFT 4G (SIFT for genomes), which is a faster version of SIFT that enables practical computations on reference genomes. Users can get predictions for single-nucleotide variants from their organism of interest using the SIFT 4G annotator with SIFT 4G's precomputed databases. The scope of genomic predictions is expanded, with predictions available for more than 200 organisms. Users can also run the SIFT 4G algorithm themselves. SIFT predictions can be retrieved for 6.7 million variants in 4 min once the database has been downloaded. If precomputed predictions are not available, the SIFT 4G algorithm can compute predictions at a rate of 2.6 s per protein sequence. SIFT 4G is available from http://sift-dna.org/sift4g.

921 citations

Journal ArticleDOI
TL;DR: This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.
Abstract: Inherited bacteria have come to be recognised as important components of arthropod biology. In addition to mutualistic symbioses, a range of other inherited bacteria are known to act either as reproductive parasites or as secondary symbionts. Whilst the incidence of the α-proteobacterium Wolbachia is relatively well established, the current knowledge of other inherited bacteria is much weaker. Here, we tested 136 arthropod species for a range of inherited bacteria known to demonstrate reproductive parasitism, sampling each species more intensively than in past surveys. The inclusion of inherited bacteria other than Wolbachia increased the number of infections recorded in our sample from 33 to 57, and the proportion of species infected from 22.8% to 32.4%. Thus, whilst Wolbachia remained the dominant inherited bacterium, it alone was responsible for around half of all inherited infections of the bacteria sampled, with members of the Cardinium, Arsenophonus and Spiroplasma ixodetis clades each occurring in 4% to 7% of all species. The observation that infection was sometimes rare within host populations, and that there was variation in presence of symbionts between populations indicates that our survey will itself underscore incidence. This extensive survey demonstrates that at least a third of arthropod species are infected by a diverse assemblage of maternally inherited bacteria that are likely to strongly influence their hosts' biology, and indicates an urgent need to establish the nature of the interaction between non-Wolbachia bacteria and their hosts.

586 citations

Journal ArticleDOI
13 Aug 2010-PLOS ONE
TL;DR: The results suggest that Spiroplasma confers protection to D. hydei against wasp parasitism, to the authors' knowledge the first report of a potential defensive mutualism in the genus Spiro Plasma.
Abstract: Background Maternally-transmitted associations between endosymbiotic bacteria and insects are ubiquitous. While many of these associations are obligate and mutually beneficial, many are facultative, and the mechanism(s) by which these microbes persist in their host lineages remain elusive. Inherited microbes with imperfect transmission are expected to be lost from their host lineages if no other mechanisms increase their persistence (i.e., host reproductive manipulation and/or fitness benefits to host). Indeed numerous facultative heritable endosymbionts are reproductive manipulators. Nevertheless, many do not manipulate reproduction, so they are expected to confer fitness benefits to their hosts, as has been shown in several studies that report defense against natural enemies, tolerance to environmental stress, and increased fecundity. Methodology/Principal Findings We examined whether larval to adult survival of Drosophila hydei against attack by a common parasitoid wasp (Leptopilina heterotoma), differed between uninfected flies and flies that were artificially infected with Spiroplasma, a heritable endosymbiont of Drosophila hydei that does not appear to manipulate host reproduction. Survival was significantly greater for Spiroplasma-infected flies, and the effect of Spiroplasma infection was most evident during the host's pupal stage. We examined whether or not increased survival of Spiroplasma-infected flies was due to reduced oviposition by the wasp (i.e., pre-oviposition mechanism). The number of wasp eggs per fly larva did not differ significantly between Spiroplasma-free and Spiroplasma-infected fly larvae, suggesting that differential fly survival is due to a post-oviposition mechanism. Conclusions/Significance Our results suggest that Spiroplasma confers protection to D. hydei against wasp parasitism. This is to our knowledge the first report of a potential defensive mutualism in the genus Spiroplasma. Whether it explains the persistence and high abundance of this strain in natural populations of D. hydei, as well as the widespread distribution of heritable Spiroplasma in Drosophila and other arthropods, remains to be investigated.

221 citations